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Abstract—In this paper we consider information-theoretically
secure communication between two special nodes (“source” and
“destination”) in a memoryless network with authenticated re-
lays, where the secrecy is with respect to a class of eavesdroppers.
We develop achievable secrecy rates when authenticated relays
also help increase secrecy rate by inserting noise into the network.

I. I NTRODUCTION

The seminal paper of Wyner [15] on the degraded wiretap
channel and its generalization in [3] laid the foundations for
information-theoretic secrecy in broadcast channels. In the
recent past, information-theoretic secrecy has been applied to
wireless networks with results on secrecy for MIMO broadcast
channels, multiple access channels, interference channels and
relay channels (see [7] and references therein). Cooperative
strategies in wireless networks has been an active area of
research (see [4] and references therein). In [13], [14] coopera-
tive secrecy forarbitrary wireless networks was studied1. This
work was inspired by recent (approximate) characterizations
of the wireless relay network [1].

In this paper we extend the studies in [13], [14] in two
distinct ways. First we provide an achievable secrecy rate for
arbitrary (layered) discrete memoryless networks and thereby
generalizing the results in [13] which were presented for
deterministic networks and its Gaussian counterpart2. Second
we generalize the noise insertion strategy studied in [11],[14],
[5] to arbitrary memoryless networks. This would also enable
a multiple-access approach for the compound wiretap channel
[12] to the case of arbitrary networks3.

The paper is organized as follows. In Section II, we set up
the problem and the notation. Some basic results for informa-
tion flow without secrecy constraints are also established.We
summarize the main results in Section III. The proof outlines
are provided in Section IV.

1The case when asinglerelay node present, as an extension of the classical
relay channel to the secrecy problem was studied in [10], [5].

2A layered network (given more precisely in Definition 1, is loosely that all
paths from source to destination are the same length. As in [1], we can extend
the results for layered networks to non-layered networks using time-expansion
on the network.

3This in part is motivated by interesting new coding scheme developed in
[8] for the compound parallel Gaussian wiretap channel, which was studied
in [6]. A way to interpret this is that we introduce multiple auxiliary random
variables into the achievable scheme in [13], [14] and give structure to it.

II. PRELIMINARIES

We consider transmission over a relay networkG = (V ,L),
whereV is the set of vertices representing the communication
nodes in the relay network andL is the set of annotated chan-
nels between the nodes, which describe the signal interactions.
Note that these channels are not point-to-point links, rather,
they model how the transmitted signals are superimposed and
received at the receiving nodes (i.e., there is broadcast and
interference). We consider a special nodeS ∈ V as the
source of the message which wants to securely communicate to
another special nodeD ∈ V (the destination) with the help of
a set of (authenticated) relay nodesA ⊂ V in the network. We
assume that a subsetB ⊆ A of the relay nodes is allowed to
generate and use independent random messages. These special
relay nodes are called “noise inserting” nodes. The secrecy
is with respect to a set of possible (passive) eavesdropper
nodesE ⊂ V whereE is disjoint fromA ∪ {S,D}. We want
to keep all or part of the message secret if any one of the
possible eavesdropper nodesE ∈ E listens to the transmissions
in the relay network. Note that the class of eavesdroppers
that we define is discrete,i.e., we assume that all possible
eavesdroppers and their channels can be enumerated. If there
is a continuum of possible eavesdropper channels, our model
can approximate this via “quantization” of this continuum.

Signal interaction model:The results in this paper are
stated for layered networks formally defined as follows.

Definition 1: A relay network islayered if for every (i, j)
such thati ∈ {S} ∪ B and j ∈ V , all the paths fromi to
j have the same length (the same number of hops inL). A
non-layerednetwork is a network in which at least one node
pair (i, j) does not have this property.
Using the time-expanded networks, as used in [1], we can ex-
tend the results for layered networks to non-layered networks.
The network we consider is constituted by (layered) discrete
memoryless channel interactions, which include broadcastand
multiple access interference [2]. The received signalyj at node
j ∈ V in layerl of the network, at timet is related to the inputs
at time t through a DMC specified by,

p(yj[t]|{xi[t]}i∈Nl−1
), (1)

whereNl−1 are the nodes in layerl − 1.
To simplify the comparison between different results, we

group the most important definitions below.
Definition 2: For I ⊆ V and j ∈ V , defineΛ(I; j) to be

the set of all cuts(Ω,Ωc) that separate setI from j. More



precisely,Λ(I; j) is the set of allΩ ⊂ V such thatI ⊆ Ω and
j ∈ Ωc.

Definition 3: Consider a (layered) relay network with dis-
crete signal alphabets. The transmit distributionp({xi}i∈V)
and quantizersp(ŷi|yi), belong to the classP if for all p ∈ P ,
we have

p =

[

∏

i∈V

p(xi)

]

p({yj}j∈V |{xi}i∈V)
∏

i∈V

p(ŷi|yi). (2)

For givenI ⊆ V and j ∈ V , we define an achievable rate
between betweenI andj as

R̂I;j(p) , min
Ω∈Λ(I;j)

[

I(XΩ; ŶΩc |XΩc) −
∑

i∈Ω

I(Yi; Ŷi|XV)

]

(3)

whereXV are channel inputs,YV correspond to the channel
outputs, andŶV are the quantized variables, all governed by
p ∈ P .

Definition 4: For a given transmit and quantization distri-
bution p ∈ P , a subsetψ ⊆ V , a nodej ∈ E ∪ {D}, define
Rψ;j(p) to be the set of all tuplesBψ = (Bi)i∈ψ such that
the components of the tuple are non-negative and such that for
any subsetI ⊆ ψ,

∑

i∈I Bi ≤ RI;j(p), where the quantity
RI;j(p) is the information-theoretic min-cut defined below,

RI;j(p) , min
Ω∈Λ(I;j)

I(XΩ;YΩc |XΩc). (4)

Note that there is a difference between̂RI;j(p) given in (3)
and RI;j(p) given in (4), sinceR̂I;j(p) is the achievable
rate induced by a given (quantize-map-forward) relay strategy,
whereasRI;j(p) is related to a cut-value, both evaluated for
p ∈ P .

Definition 5: For a given input and quantization distribution
p ∈ P , a subsetψ ⊆ V \{S}, and a nodej ∈ E ∪{D}, define
R̂ψ;j(p) to be the set of all tuples(B′, Bψ) = (B′, (Bi)i∈ψ)
such that the components of the tuple are non-negative and
such that for any subsetI ⊆ ψ,

B′ +
∑

i∈I

Bi ≤ R̂I∪{S};j(p).

Note that for a givenψ ⊆ V \ {S}, R̂ψ;j(p) differs from
Rψ∪{S};j(p) in two ways. First,Rψ∪{S};j(p) is related to
information-theoretic cut-values, evaluated for a particularp ∈
P , andR̂ψ;j(p) is related to the achievable rate for a particular
(quantization) relay strategy. Secondly,Rψ∪{S};j(p) imposes
constraints for all subsets ofψ including those that do not
containS, i.e., like a MAC region. In Definition 5 forR̂ψ;j(p),
all the rate-constraints involveS.

Secrecy requirements::The notion of information-
theoretic secrecy is defined through theequivocationrateRe,
which is the residual uncertainty about the message when
the observation of the strongest eavesdropper is given. More
formally, [15], [3], given a(T, ǫ)-code, the equivocation rate is
1
T

minE∈E H(W |YE), whereW is the uniformly distributed
source message,YE is the sequence of observations at eaves-
dropperE andH(·|·) denotes the (conditional) entropy [2].

The “perfect” (weak) secrecy capacity is the largest transmitted
information rateR, such thatR = Re is achievable. This
notion can be strengthened tostrong perfect secrecy, if the
equivocation is defined in bitsminE∈E H(W |YE), instead of
a rate [9]. Using the tools developed in [9], we can convert all
the results to strong secrecy, once we have proved it for weak
secrecy (see also [11]).

A. Information flow over layered networks

Here we present a result about communication in a layered
DMC network that is needed for the proof of our main results
on cooperative secrecy. With no secrecy requirements, the
transmission scheme is the same as developed in [1], and is
informally described below.

Network operation::Each node in the network generates
codes independently using a distributionp(xi). The sourceS
chooses a random mapping from messagesw ∈ {1, . . . , 2RT }
to its transmit typical setTxS

, and therefore we denote by
x

(w)
S , w ∈ {1, . . . , 2TR} as the possible transmit sequences

for each message. Each received sequenceyi at nodei is
quantized toŷi and this quantized sequence is randomly
mapped onto a transmit sequencexi using a random function
xi = fi(ŷi), which is chosen such that each quantized
sequence is mapped uniformly at random to a transmit se-
quence. This random mapping can be represented by the
following construction. Generate2TRi sequencesxi from
the distribution

∏

j p(xi[j]), and generate2TRi sequences
ŷi using a product distribution

∏

j p(ŷi[j]). We denote the

2TRi sequences of̂yi as ŷ
(ki)
i , ki ∈ {1, . . . , 2TRi}. Note

that standard rate-distortion theory tells us that we need
Ri > I(Yi; Ŷi) for this quantization to be successful. Note that
since the uniformly at random mapping producesxi = fi(ŷi),
for a quantized value of indexki, we will denote it byŷ(ki)

i

and the sequence it is mapped to byx
(ki)
i = fi(ŷ

(ki)
i ).

In the multisource problem, a set of sourcesS ⊂ V wish
to communicate independent messages to the destinationD

over the network. Each of the relay nodes operate as above,
except if it is also a source, then the transmitted sequence
is a (uniform random) mapping of both its message and its
received (quantized) signal. This scheme was studied for the
deterministic and Gaussian interaction models in [14], [11]. Its
simple extension to (layered) memoryless networks is stated
below.

Theorem 1:For any memoryless layered network, from a
set of sourcesS to a destinationD, we can achieve any rate
vector satisfying

∑

k∈I⊆S

Rk ≤ R̂I;j(p)

for some distributionp ∈ P defined in (2), wherêRI;j(p) is
defined in (3).

III. M AIN RESULTS

Broadly there are a sequence of three (increasing generality)
ideas to the achievability scheme.(i) Separable scheme:The
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relay network is operated as described in Section II-A, but
the secrecy is induced by an end-to-end scheme overlaid on
this. (ii) Noise insertion:In addition to the above operation, a
subset of the authenticated relays insert independent messages
(noise) which are intended to disrupt the eavesdropper and are
not required to be decoded.(iii) Auxiliary variables:In addition
to the above, the source prefixes an artificial multiuser channel
in order to allow multiple auxiliary variables.

We will state the results in increasing generality in order
to clarify and interpret the results. For the simplest case,
where relay nodes operate using the quantize-map-forward
strategy described in Section II-A, without regard to secrecy
requirements, the end-to-end separable scheme achieves the
following secrecy region.

Theorem 2:For a given distributionp ∈ P defined in (2),
the (strong) perfect secrecy rate between the sourceS and
destinationD with respect to a class of eavesdroppersE , with
R̂S;D(p) given in (3), is lower bounded as

C̄s ≥ R̂S;D(p) − max
E∈E

min
Ω∈ΛE

I(XΩ;YΩc |XΩc),

where the second term is evaluated forp ∈ P .
We can improve and generalize the result in Theorem 2

by using noise insertion at an arbitrary subsetB ⊂ V . These
independent messages are not needed to be decoded anywhere,
but can be used to “jam” the eavesdroppers.

Definition 6: For an input distributionp, we define the
following function:

F (p) = max
BB∈∩E∈ERB;E(p)

[

max
x

{x : (x,BB) ∈ R̂B;D(p)}

− max
x

{x : (x,BB) ∈ ∪E∈ERB∪{S};E(p)}
]

.

Theorem 3:The (strong) perfect secrecy for any (layered)
relay network with discrete memoryless signal interactionis
lower bounded as

C̄s ≥ max
p∈P

F (p),

Basically the idea in Theorem 3 is that the noise insertion
effectively creates virtual MAC regions (for the eavesdroppers
and the legitimate receiver). The projection of the difference of
these regions onto the source message rate yields the secrecy
rate4. That is, the noise insertion “fills” up the eavesdropper
rate region with “junk” information, thereby protecting the
information. This notion can actually be formalized, as seen
in the proof outline. Also note that this is a way to think of
the wiretap channel [15], where all the junk information is at
the source. The noise insertion just distributes the origins of
the junk all over the network.

In order to introduce auxiliary variables, we prefix an arti-
ficial memoryless channel in the sources, thereby modifying
the channel law for the networks. Since this does not change
the basic arguments for Theorem 3 (or its special case of

4A related strategy was developed in [5] for the Gaussian (single) relay
channel where the relay forwarded Gaussian noise along withdecoded
information.

Theorem 2), we do not restate the result. Note that in this
case the form of the secrecy rate is the same, except that we
can also optimize over the choice of the artificial channels.
Also, in the proof outlines, we will focus on weak secrecy,
but as mentioned earlier, using the techniques of [9] we can
obtain it for strong secrecy (see [11] for more details).

IV. PROOF OUTLINES

We first give a proof outline for Theorem 2 for a single
eavesdropper, to illustrate the basic techniques. We also give
a proof outline for Theorem 3, for the special case of a single
eavesdropper and a single noise inserting node. These ideas
can then be generalized to give the results stated.

A. Proof outline for Theorem 2

In the separable scheme, the relay network operates as
described in Section II-A, without secrecy requirements. The
secrecy is induced by an end-to-end “coloring” scheme over-
laid on the message list induced at the eavesdropper. In
particular, the source transmits a sequenceXS based on the
information messageW and a “junk” messageJ , which have
ratesRs and B respectively. For a given choice of relay
strategy determined byp ∈ P , the equivocationRe at the
eavesdropperE can be lower bounded as,

1

T
H(W |YE) ≥

1

T
H(XS) −

1

T
H(XS |W,YE) −

1

T
I(XS; YE), (5)

whereYE is the received sequence at the eavesdropper. Since
the message needs to be decoded at the destination, by choos-
ing a total rateRs + J such that 1

T
H(XS) = R̂S;D(p) − ǫ1,

we guarantee using Theorem 1, for large enoughT , that we
can do so with vanishing error probability. Now, let us fix a
information messageW = w, and defineAw is the event that
E makes a decoding error when trying to decodeJ , using
YE , assuming thatW = w is available (through a genie) to
E. Note that for a fixedW = w, the codewords generated atS

has the same distribution as a randomly generated code of rates
B. Now, we choose junk rateB such thatB ≤ R̂S;E(p), and
this ensures (again due to Theorem 1) thatE[P(Aw)] ≤ ǫ0.
Here the expectation is over the randomly generated code (over
source and relays). Therefore by using Fano’s inequality [2],
we can bound1

T
H(XS |W,YE) ≤ ǫ′, again for large enough

T , and arbitraryǫ′ > 0. Hence, the only remaining term to
bound in (5), is the term1

T
I(XS ;YE). We bound this by using

the following (more general) result proved in [11], which isa
form of “local” converse5.

Lemma 1:Consider a (layered) discrete memoryless net-
work, with finite transmit alphabets. LetI ⊆ B be a subset
of the noise-inserting nodes and letE ∈ V be any node. Let
∏

i∈V p(xi) be given and let(XV ,YV) be the corresponding
random transmit and received sequences. The randomness of
these sequences comes from the randomness of the code, as
well as from the random messages and the channel noise. We
assume that the code is a block code of typical sequences (with

5We term this local converse, because it applies to agiven product
distribution on the relay maps and forms a cut-set like outerbound on the
mutual information.
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respect top ∈ P). We have that for anyǫ > 0, there is a large
enough value ofT such that

P
(

I(XS ,XI ;YE |JB\I) > TRI∪{S};E(p)
)

≤ ǫ.

Here, the probability is over all randomly generated codes,
andRI;j(p) is defined in (4).

Therefore, by settingB = φ, we get from Lemma 1
that for large enoughT and anyǫ′′ > 0, P

(

I(XS ;YE) >
TRS;E(p)

)

≤ ǫ′′. By putting all these together in (5),
we see that for a choice of junk rateB ≤ R̂S;E(p) and
Rs+B = R̂S;D(p)−ǫ1, we obtain the result given in Theorem
2, for the single eavesdropper6.

Now, we illustrate the technique for multiple eavesdrop-
pers. The basic idea is to have multiple “junk” messages
at the source. For example, if we have two eavesdroppers
E1, E2. then the source transmits a sequenceXS based on
the information messageW and two “junk” messages(J1, J2),
which have ratesRs and(B1, B2) respectively. For a particular
choice ofp ∈ P , let RS;E1(p) ≥ RS;E2(p), with no loss of
generality. In this case, we can lower bound the equivocations
at each of the eavesdroppers as,
1

T
H(W |YE1 ) ≥

1

T
H(XS) −

1

T
H(XS|W,YE1) −

1

T
I(XS;YE1),

1

T
H(W |YE2 ) ≥

1

T
H(XS|J1) −

1

T
H(XS |W, J1,YE2)

−
1

T
I(XS ;YE2 |J1).

Now, the argument is similar to the case with the single
eavesdropper. We choose a total rateRs + B1 + B2 such
that (W,B1, B2) is decodable atD. For eavesdropperE2,
we choose a junk rateJ2, such that it is able to decode it,
given access to(W,J1), i.e.,B2 ≤ R̂S;E2(p). Then we choose
rate B1, so that (J1, J2) is decodable atE1 given access
to W , i.e., B1 + B2 ≤ R̂S;E1(p). By doing this, as before
we can use Fano’s inequality to bound the second terms in
each of the above equivocation terms. The last term in each
of the above equivocation inequalities are again bounded by
using the local converse Lemma 1. Using this argument we
therefore lower bound the minimum of the two equivocation
rates asR̂S;D(p)−maxi∈{1,2}{minΩ∈ΛEi

I(XΩ;YΩc |XΩc)},
where the mutual information is also evaluated forp ∈ P .
Now, by using a similar argument as in the single eavesdropper
case, we can ensure perfect secrecy for this information rate.
This argument can be extended to an arbitrary number of
eavesdroppers.

B. Proof outline for Theorem 3

The idea in Theorem 3 is that a set of nodesB insert
independent messages that need not be decoded, but could
help secrecy. We will illustrate the proof idea using a single
noise inserter, but the idea for multiple inserters is extended
using techniques similar to that developed in [11], in the case
of deterministic and Gaussian networks.

Assume that a single relay nodeA ∈ V inserts a noise
messageJA at rateBA i.e., its transmit sequenceXA is a

6Note the equivocation rateRe is smaller thanRs, and therefore to get
perfect secrecy we need to use a further argument to keep the part of the in-
formation with rate equal toRe = R̂S;D(p)−minΩ∈ΛE

I(XΩ;YΩc |XΩc )
perfectly secure.

List size

Junk message rate

Source
rate

Destination

Eavesdropper

function of (JA, ŶA), whereŶA is its (quantized) received
sequence. In addition, as in Section IV-A the source transmits
XS which is a function of(W,J), its information and “junk”
message. As in (5), we can write the equivocation at the
eavesdropperE for anyI ⊆ B = A as,
1

T
H(W |YE) ≥ H(XS,XI |JB\I) − H(XS,XI |W,YE1 , JB\I)

(6)

− I(XS,XI ;YE|JB\I).

Now, the proof proceeds in a manner similar to Section IV-A,
with the multisource regions replacing the rates used earlier.
Due to Theorem 1 by choosingRs+B+BI ≤ R̂I∪{S}:D(p),
with equality for someI ⊆ B, we can ensure that(W,J) are
decoded atD with high probability. Now, ifE is given access
to W = w, we can decode the junk messages(J, JA) at E,
if B +BI ≤ R̂I∪{S}:E(p) andBI ≤ R̂I:E(p), i.e., the rates
(J, JA) lie in the MAC region. Such a choice allows us to use
Fano’s inequality and show thatH(XS ,XI |W,YE1 , JB\I),
the second term in (6) is small. Finally, by using the local
converse Lemma 1, we upperbound the third term. Putting
these together, we get the result stated in Theorem 3. This is
illustrated in Figure IV-B, where the pentagon represents the
MAC region associated with the eavesdropper (Rψ∪{S};j(p)),
and the trapezoid represents the region for the destination
involving the source (̂RI;j(p)). By creating uncertainty at the
eavesdropper, we can obtain perfect secrecy.

C. Proof outline for Theorem 1

We will illustrate this for a single source, in a layered
network. The encoding and decoding strategies are as in [1]
as described in Section II-A. To summarize, the decoderD

checks the set̂W of messageŝw for which there exists some
indices{kj} for all the relay nodes such that

(x
(ŵ)
S ,yD, {ŷ

(ki)
i ,x

(ki)
i }i) ∈ Aǫ, (7)

whereAǫ is joint typicality. That is we have a set of plausible
transmit sequences and associated quantized values for which
w′ is possible. With high probability the correct messagew is
in this list, i.e., P(w ∈ Ŵ) → 1, as block-lengthT becomes
large. Let us denote that for the messagew, the quantization
indices are{ki} at the relays. We have an error ifw′ 6= w is
also in the list. This probability thatw′ ∈ Ŵ), whenw 6= w′

was transmitted can be written as follows.

Pr
˘

w → w
′
¯

= P
˘

∃{k′i}i, ∀i, such that (x
(w′)
S

,yD , {ŷ
(k′

i
)

i
,x

(k′
i
)

i
}i) ∈ Aǫ

ff

(8)

4



Distinguishability:: A node i can distinguish between
w and w′ if ŷi 6= ŷ

′
i, where the “primed” system denotes

that underw′. We can condition on the event that the correct
message produces indices{ki}, and since this is a generic
index, we can carry out the entire calculation conditioned on
this and then average over it. Of course, we need to take into
account all possible outcomes due to the incorrect message,
and so we can rewrite (8) as,

Pr
˘

w → w′
¯

≤
X

Ω

X

i

2T Ri
X

k′
i
=1

P
˘

{k′
i}i, such thatk′

i = ki,∀i ∈ Ωc,

(9)

k′
i 6= ki,∀i ∈ Ω, (x

(w′)
S

,yD , {ŷ
(k′

i)
i

,x
(k′

i)
i

}i) ∈ Aǫ

ff

Given (9), we can focus on a particular cutΩ. note that we
can reduce the summation over alli to that ini ∈ Ω, since for
these the quantization index is fixed,i.e., k′i = ki, i ∈ Ωc. For
a particular cut, we can write the cut-probability expression as

Pr{w → w′} ≤
∑

i∈Ω

2T Ri
∑

k′
i
=1

P (10)

where

P = P {{k′i}i, such thatk′i = ki, ∀i ∈ Ωc, k′i 6= ki, ∀i ∈ Ω,

(11)

(x
(w′)
S ,yD, {ŷ

(k′i)
i ,x

(k′i)
i }i) ∈ Aǫ

}

Now, let us examineP by defining the event (which is a
“consistency” check),

Fl = {{k′i}i, s.t k′i = ki, ∀i ∈ Ωcl , k
′
i 6= ki, ∀i ∈ Ωl, (12)

({ŷ(k′i)}i∈Nl
, {x

(k′j)

j }j∈Nl−1
) ∈ Aǫ

}

,

where for convenience of notation we have denotedyD =

ŷ
(k′i)
i , i ∈ NLD

, andxS = x
(k′j)

j , j ∈ N0, LS = 0. As before
we have also usedΩl = Ω ∩ Nl. Therefore, we can write

P = Pr{Fl, l = 1, . . . , LD} (13)

The calculation ofP asks the probability that sequences
generated like





∏

j∈Ω

p(xj)





[

∏

i∈Ω

p(ŷi)

]

[p({ŷi}i∈Ωc , {xj}j∈Ωc)] , (14)

behaves as if they were generated jointly,i.e., like
p({ŷi}i∈V , {xj}j∈V).

Lemma 2:P ≤ 2−T [Γ−4ǫ], where

Γ =
∑

j∈Ω

H(Xj) +
∑

i∈Ω

H(Ŷi) +H({Ŷi}i∈Ωc , {Xj}j∈Ωc)

(15)

−H({Ŷi}i∈V , {Xj}j∈V)

We can simplifyΓ as,

Γ = I({Ŷi}i∈Ωc ; {Xj}j∈Ω|{Xj}
c
j∈Ω) (16)

− H({Ŷi}i∈Ω|{Xj}j∈V , {Ŷi}i∈Ωc) +
∑

i∈Ω

H(Ŷi)

Now if we use (16) and Lemma 2 in (10), we get

∑

i∈Ω

2TRi
∑

k′
i
=1

2−T [Γ−4ǫ] = 2−T [[Γ−
P

i∈Ω Ri]−4ǫ], (17)

whereΓ is given in (16). Also since we will chooseRi =
I(Ŷi;Yi) + ǫ′ to ensure the existence of the appropriate
quantizer, we can write the exponent in (17) after some algebra
as,

min
Ω∈Λ(I;j)

[

I(XΩ; ŶΩc |XΩc) −
∑

i∈Ω

I(Yi; Ŷi|XV)

]

(18)

which yields the result for a single source. The multi-source
extension is quite similar to this (see also [11] for a similar
proof for the deterministic and Gaussian cases).
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