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Abstract—In this paper we consider information-theoretically Il. PRELIMINARIES

secure communication between two special nodes ('sourced e consider transmission over a relay netwérke (V, £),
destination”) in a memoryless network with authenticated re- . . . S
lays, where the secrecy is with respect to a class of eavesppers. WhereV s the set of vertices representing the communication
We develop achievable secrecy rates when authenticated ags nodes in the relay network andiis the set of annotated chan-
also help increase secrecy rate by inserting noise into theetwork.  nels between the nodes, which describe the signal interecti
Note that these channels are not point-to-point links,erath
they model how the transmitted signals are superimposed and
|. INTRODUCTION received at the receiving nodese(, there is broadcast and

interference). We consider a special noflec V as the

The seminal paper of Wyner [15] on the degraded wiret§9Urce of the.message which wants .to s_ecureliy communicate to
channel and its generalization in [3] laid the foundations f @nother special nod® < V (the destination) with the help of
information-theoretic secrecy in broadcast channels.him ta Set of (authenticated) relay nodds- 1 in the network. We
recent past, information-theoretic secrecy has beenegppti 2SSume that a subsBtc A of the relay nodes is allowed to
wireless networks with results on secrecy for MIMO broaticagenerate and use independent random messages. Thesé specia
channels, multiple access channels, interference chmanel '€1ay nodes are called “noise inserting” nodes. The secrecy
relay channels (see [7] and references therein). Cooperaff With respect to a set of possible (passive) eavesdropper
strategies in wireless networks has been an active area"8fles€ C V wheref is disjoint from AU {5, D}. We want
research (see [4] and references therein). In [13], [14pec 0 keep all or part of the message secret if any one of the
tive secrecy fomrbitrary wireless networks was studiedrhis possible eavesdropper nodés: £ listens to the transmissions

work was inspired by recent (approximate) characterinatiol? the relay network. Note that the class of eavesdroppers
of the wireless relay network [1]. that we define is discreté,e., we assume that all possible
&avesdroppers and their channels can be enumerated.édf ther

fsa continuum of possible eavesdropper channels, our model

arbitrary (layered) discrete memoryless networks ancdether can approxi_mate th.is via “quantization” of_this _continuum.
generazng the resuls n (13] whih were pesenie g S0 e moderThe fste 1 s paper
deterministic networks and its Gaussian countefp&econd Definitionyl' A relay network islayeredif for every (i '.)
we generalize the noise insertion strategy studied in [14], ' Y y Y\t

[5] to arbitrary memoryless networks. This would also eaabﬁuﬁ:\/;h?;le ia{rﬂg(a} |Lé f tﬁng#e esa]jﬁealgskr:qebgfg}shgoginf
a multiple-access approach for the compound wiretap chanhe "9 : ) P
[12] to the case of arbitrary networks non-layerednetwork is a network in which at least one node

. . _ air (¢, j) does not have this property.
The paper is organized as follows. In Section Il, we set sing the time-expanded networks, as used in [1], we can ex-

the problem and the notation. Some basic results for informa 4 the results for layered networks to non-layered nesvor
tion flow without secrecy constraints are also establiskéel. o nerwork we consider is constituted by (layered) digcret
summarize th_e main results in Section Ill. The proof OUﬂ'nememoryless channel interactions, which include broadast
are provided in Section IV. multiple access interference [2]. The received signait node
j € Vin layerl of the network, at time is related to the inputs

1The case when singlerelay node present, as an extension of the classicatt time ¢ through a DMC specified by,
relay channel to the secrecy problem was studied in [10], [5]

2A layered network (given more precisely in Definition 1, issely that all p(yj [t] |{=’Uz [t]}ie-f\/‘lfl )a 1)

paths from source to destination are the same length. Ag,imvELcan extend .
the results for layered networks to non-layered networksgume-expansion  WhereN;_; are the nodes in layér— 1.

on the network. To simplify the comparison between different results, we

3This in part is motivated by interesting new coding schemeeldped in group the most important definitions below.
[8] for the compound parallel Gaussian wiretap channel,ctvhwas studied Definiti 2 For 7 C di V. define A(Z: i b
in [6]. A way to interpret this is that we introduce multiplesaliary random efinition 2: ForZ C V andj € V, defineA(Z; j) to be

variables into the achievable scheme in [13], [14] and givecture to it. the set of all cutg(2, Q¢) that separate sef from ;. More

In this paper we extend the studies in [13], [14] in twi
distinct ways. First we provide an achievable secrecy rate



precisely,A(Z; j) is the set of alk2 C V such thatZ C Q and The “perfect” (weak) secrecy capacity is the largest tratteth

7 € e, information rateR, such thatR = R, is achievable. This
Definition 3: Consider a (layered) relay network with disnotion can be strengthened strong perfect secrecy, if the

crete signal alphabets. The transmit distributig{x;};cy) equivocation is defined in bitsingcs H(W|Y g), instead of

and quantizerg(y;|y:), belong to the clas® if for all p € P, a rate [9]. Using the tools developed in [9], we can convért al

we have the results to strong secrecy, once we have proved it for weak
secrecy (see also [11]).
p= Hp(fﬂi)] p(y;}ievl{zitiev) [ [ p(@ily). () .
ey ey A. Information flow over layered networks
For givenZ C V andj € V, we define an achievable rate Here we present a result about communication in a layered
between betweeff andj as DMC network that is needed for the proof of our main results

on cooperative secrecy. With no secrecy requirements, the
transmission scheme is the same as developed in [1], and is
informally described below.

3) Network operation::Each node in the network generates
Icodes independently using a distributipfx;). The sourceS
ooses a random mapping from messages {1, ...,2%7}

R (p) 2 mi I(Xq: Yol Xae) =Y I(Y;: Vil X
Rz,i(p) Qéﬂ%j)l( o; Yoe| Xqe) z%:l( ;Y| Xy)

where Xy, are channel inputsy,, correspond to the channe
outputs, andyy, are the quantized variables, all governed by ™ ) ,
» epP v a g 0 its transmit typical set,., and therefore we denote by

(w) TR ; i
Definition 4: For a given transmit and quantization distriXs +@ € {1,...,2°"} as the possible transmit sequences
butionp € P, a subset) C V, a nodej € £ U {D}, define for each message. Ea_ch recen_/ed sequencat r_10dez is
Ry:;(p) to be the set of all tuple®,, = (B;);cy Such that guantized toy, and thls quantlzed.sequence is randpmly
the components of the tuple are non-negative and such that fi#PPed onto a transmit sequenceusing a random function
any subsefl C ¢, Y ,; Bi < Rz.;(p), where the quantity Xi = fi(Y_i)a which is phosen such that each quant_lzed
Rz.;(p) is the information-theoretic min-cut defined below, S€quénce is mapped uniformly at random to a transmit se-
N . guence. This random mapping can be represented by the
Rz;5(p) :Qefﬁég,,,)I(Xn;Yszc|XQc)~ (4) following construction. Generate”®: sequencesx; from
Y . the distribution] ], p(x;[j]), and generate i sequences
Note that there is a difference betweén;(p) given in (3) 'y, using a product distributiof[; p(y;[s]). We denote the
and _RI;j(p) given _in (4), singeRI;j(p) is the achievable o7r; sequences ofy; as ygk»’ki € {1,...,2TR}. Note
rate induced by a given (quantize-map-forward) relay 8§t 4t standard rate-distortion theory tells us that we need
whereasRz;;(p) is related to a cut-value, both evaluated fof, - 1(y;; ¥;) for this quantization to be successful. Note that
pPEP. . o o ... since the uniformly at random mapping produges= f;(¥,),
Definition 5: For a given input and qugntlzatlon dlstrlt.)utloq;or a quantized value of indek;, we will denote it byygki
p € P, asubset) C V\{S}, and a nodg € £U{D}, define o ) ~ (k)
B p , and the sequence it is mapped t03b37 = fi(y;"").
Ry:;(p) to be the set of all tuple6B’, By,) = (B’, (Bi)icy) : i .
: : In the multisource problem, a set of sourcgsc V wish
such that the components of the tuple are non-negative e%nd . . .
0 communicate independent messages to the destination
such that for any subsét C v,
) over the network. Each of the relay nodes operate as above,
B'+ ) Bi < Rzugsy;(p)- except if it is also a source, then the transmitted sequence
icT is a (uniform random) mapping of both its message and its

Note that for a given C v\ {S} B (p) differs from received (quantized) signal. This scheme was studied for th
Ruoisvi(p) in two ways_. First R, U Sw’*f(;’) is related to d€terministic and Gaussian interaction models in [14]].[$
inffxinéﬁon—theoretic cutvalues, e\;ball{Ja}téd for a patticy ¢ SImPle extension to (layered) memoryless networks is dtate

P, andR.;(p) is related to the achievable rate for a particulak?elow' )
(quantization) relay strategy. SecondR. s}, (p) imposes Th?orem 1£or ané/ mgmo_ryless layered nr:a_twork, from a
constraints for all subsets af including those that do not set o source: to a destinationD, we can achieve any rate
contain$, i.e., like a MAC region. In Definition 5 fofR .., (p), vector satisfying
all the rate—constra_ints involve. . . . Z Ry, < Rz;j(p)

Secrecy requirements::The notion of information- keZes
theoretic secrecy is defined through #nguivocatiorrate R.., a .
which is the residual uncertainty about the message whie some distributiorp € P defined in (2), wherekz;(p) is
the observation of the strongest eavesdropper is givene Meétefined in (3).
formally, [15], [3], given &a(T’, €)-code, the equivocation rate is
+mingee H(W|[Y g), whereW is the uniformly distributed
source messagd, g is the sequence of observations at eaves-Broadly there are a sequence of three (increasing gengralit
dropperE and H(-|]-) denotes the (conditional) entropy [2].ideas to the achievability schem@. Separable schemé&he

IIl. M AIN RESULTS



relay network is operated as described in Section Il-A, btheorem 2), we do not restate the result. Note that in this
the secrecy is induced by an end-to-end scheme overlaid case the form of the secrecy rate is the same, except that we
this. (i) Noise insertionin addition to the above operation, acan also optimize over the choice of the artificial channels.
subset of the authenticated relays insert independentagess Also, in the proof outlines, we will focus on weak secrecy,
(noise) which are intended to disrupt the eavesdropper end but as mentioned earlier, using the techniques of [9] we can
not required to be decode(ii) Auxiliary variables:In addition obtain it for strong secrecy (see [11] for more details).
to the above, the source prefixes an artificial multiuser cbn
in order to allow multiple auxiliary variables. IV. PROOF OUTLINES

We will state the results in increasing generality in order : ) _ _
to clarify and interpret the results. For the simplest case,We first give a_proof outline for_ Theore_m 2 for a §|ngle
where relay nodes operate using the quantize-map-forw&RY€Sdropper, to illustrate the basic techniques. We ale g
strategy described in Section II-A, without regard to segre & Proof outline for Theorem 3, for the special case of a single
requirements, the end-to-end separable scheme achie@/eseﬂyesdropper and a single noise inserting node. These ideas
following secrecy region. can then be generalized to give the results stated.

Theorem 2:For a given distributiorp € P defined in (2), ,
the (strong) perfect secrecy rate between the sosrand A Proof outline for Theorem 2

destinationD with respect to a class of eavesdroppgrsvith In the separable scheme, the relay network operates as

Rs.p(p) given in (3), is lower bounded as described in Section II-A, without secrecP/ requirementse T
s;p(P) 9 ' secrecy is induced by an end-to-end “coloring” scheme over-

laid on the message list induced at the eavesdropper. In

Cs > Rgp(p) —max min I(Xo; Yo Xo), particular, the source transmits a sequece based on the
ce Hehn information messag#” and a “junk” messagéd, which have
where the second term is evaluated fog P. rates R, and B respectively. For a given choice of relay

We can improve and generalize the result in Theorem® \a}é%g ro%%tgérrggﬁ bé))rov%ez)botnﬁdg u{jll\gc,)catlonRe at the

by using noise insertion at an arbitrary subBet V. These
independent messages are not needed to be decoded anywhere,w vy ») > ~ H(Xs) — = H(Xs|W,Y5) — —1(Xs: Ys), ®)
but can be used to “jam” the eavesdroppers. 4 4 4 4
Definition 6: For an input distributionp, we define the whereY g is the received sequence at the eavesdropper. Since

following function: the message needs to be decoded at the destination, by choos-
. ing a total rateR, + J such thaty H(Xg) = Rs;p(p) — e1,
F(p) = max max{z : (z, Bg) € Rp;p(p)} we guarantee using Theorem 1, for large enofighhat we
BpenpeeRpe(p) L = can do so with vanishing error probability. Now, let us fix a
— mzax{:c : (z,Bg) € UEegRBU{s};E(p)}}. information messag¥” = w, and defined,, is the event that

E makes a decoding error when trying to decafleusing
Theorem 3:The (strong) perfect secrecy for any (IayeredyE, assuming thatV = w is available (through a genie) to
relay network with discrete memoryless signal interaci®n r Note that for a fixedV — w. the codewords generatedt
lower bounded as has the same distribution as a randomly generated codeesf rat
Cy > max F(p), BZ Now, we choos_e junk rat® such thatB < Rg.g(p), and
pEP this ensures (again due to Theorem 1) tR&#P(A,)] < €.

Basically the idea in Theorem 3 is that the noise insertidiie"® the expectation is over the randomly generated cod (ov
effectively creates virtual MAC regions (for the eavesgreys SOuUrce and relays). Therefore by using Fano's inequality [2
and the legitimate receiver). The projection of the differeof W€ can bognd%H(XS|W, Y ) < €, again for large enough
these regions onto the source message rate yields the pecfecand arbitrarye’ > 0. Hence, the only remaining term to
rate. That is, the noise insertion “fills” up the eavesdroppdtoundin (5), is the ternj:/(X.s; Y ). We bound this by using
rate region with “junk” information, thereby protectingeth the following (more general) result proved in [11], whichais
information. This notion can actually be formalized, asnsedorm of “local” converse.
in the proof outline. Also note that this is a way to think of Lemma 1:Consider a (layered) discrete memoryless net-
the wiretap channel [15], where all the junk information is avork, with finite transmit alphabets. L&t C B be a subset
the source. The noise insertion just distributes the osigih ©Of the noise-inserting nodes and Iete V be any node. Let
the junk all over the network. [L;ey p(xi) be given and letXy, Yy) be the corresponding

In order to introduce auxiliary variables, we prefix an artitandom transmit and received sequences. The randomness of
ficial memoryless channel in the sources, thereby modifyiigese sequences comes from the randomness of the code, as
the channel law for the networks. Since this does not chariygll as from the random messages and the channel noise. We
the basic arguments for Theorem 3 (or its special case @fsume that the code is a block code of typical sequencés (wit

4A related strategy was developed in [5] for the Gaussianglsjnrelay SWe term this local converse, because it applies tamiwen product
channel where the relay forwarded Gaussian noise along déttoded distribution on the relay maps and forms a cut-set like obtaund on the
information. mutual information.



respect tgp € P). We have that for any > 0, there is a large Eavesdropper
enough value ofl" such that Source

rate
P(I(Xs,Xz;Yg|Jpz) > TRrugsye(p) <€

List size

Here, the probability is over all randomly generated codes,
and Rz,;(p) is defined in (4).

Therefore, by settings = ¢, we get from Lemma 1
that for large enough” and anye” > 0, P(I(Xs;Yg) >
TRs;s(p)) < €. By putting all these together in (5),
we see that for a choice of junk rat8 < Rg.z(p) and

R+ B = Rs.p(p) —c1, we obtain the result given in Theoremy, . wion of (7., ¥ ), where Y 4 is its (quantized) received
2, for the single eavesdropger . sequence. In addition, as in Section IV-A the source tratssmi
Now, we illustrate the technique for multiple eavesdro < which is a function off W, .J), its information and “unk”

ers. The basic idea is to have multiple “junk” messa . ; : .
gt the source. For example, if we havpe t\N{) eavesdrop% ssage. As in (5), we can write the equivocation at the

Ey, E,. then the source transmits a sequeite based on cavesdroppeE foranyZ C B = A as,

the information messad& and two “junk” messages/i, J2), 1

which have rate®, and (B, B,) respectively. For a particular 711 (W[Yr) 2 H(Xs,Xz|Js\z) — H(Xs, Xz|W, Y5, J5\z)
choice ofp € P, let Rs.g, (p) > Rs:.g,(p), with no loss of (6)
generality. In this case, we can lower bound the equivonatio _ .

at each of the eavesdroppers as, [(Xs, X2 Yl Jp\1)-

Destination

Junk message rate

1 1 1 1 Now, the proof proceeds in a manner similar to Section IV-A,
FHWIXe) 2 FHXs) = zHXsIW. Ye,) = 71Xsi¥e): with the multisource regions replacing the rates used ezarli
LHWIYey) > SHXslh) - S HXs|W, 71, Y5,) Due to Theorem 1 by choosing, + B+ Bz < Rrisy.p(p),

r f r with equality for someZ C B, we can ensure thdlV, J) are

- plXsi¥ml). decoded af with high probability. Now, ifE is given access

Now, the argument is similar to the case with the sing® W = w, we can decode the junk messadés/4) at £,
eavesdropper. We choose a total rdte + B; + B, such if B+ Bz < Rzy(sy.e(p) and Bz < Rz.g(p), i.e., the rates
that (W, B;, B,) is decodable atD. For eavesdroppeE,, (-/,Ja) lie inthe MAC region. Such a choice allows us to use
we choose a junk ratd,, such that it is able to decode it,Fano’s inequality and show tha (Xs, Xz|W,YEg,, Js\1),
given access toWV, J; ), i.e., By < ]%S;Ez (p). Then we choose the second term in (6) is small. Finally, by using the local
rate B;, so that(.Ji,.J;) is decodable atf;, given access converse Lemma 1, we upperbound the third term. Putting
to W, i.e., By + By < Rg., (p). By doing this, as before these together, we get the result stated in Theorem 3. This is
we can use Fano’s inequality to bound the second termsilistrated in Figure IV-B, where the pentagon represeheés t
each of the above equivocation terms. The last term in ed¥f\C region associated with the eavesdropgey,((sy.;(p)),
of the above equivocation inequalities are again bounded @jyd the trapezoid represents the region for the destination
using the local converse Lemma 1. Using this argument Wavolving the sourceRRz;;(p)). By creating uncertainty at the
therefore lower bound the minimum of the two equivocatiogavesdropper, we can obtain perfect secrecy.
rates asits;p(p) — max;e (1 23 {mingen,, 1(Xa;Yoe|Xae)}l, ¢, Proof outline for Theorem 1
where the mutual information is also evaluated fo P. We will illustrate this for a single source, in a layered
Now, by using a similar argument as in the single eavesdmppe ’

.o . nétwork. The encoding and decoding strategies are as in [1]
case, we can ensure perfect secrecy for this informatien rat

: . as described in Section II-A. To summarize, the decaller
This argument can be extended to an arbitrary number - . ) .
checks the se¥V of messages for which there exists some
eavesdroppers.

indices{k;} for all the relay nodes such that
B. Proof outline for Theorem 3 ()

~ (ki ki
o | | (x5, yp, (31", %)) € A, (7)
The idea in Theorem 3 is that a set of nod@sinsert L o . _
independent messages that need not be decoded, but c¥{i1gre-A. is joint typicality. That is we have a set of plausible
help secrecy. We will illustrate the proof idea using a gingfransmit sequences and associated quantized values foh whi
noise inserter, but the idea for multiple inserters is edéeh ' 1S Possible. With high probability the correct messages
using techniques similar to that developed in [11], in theecaln this list,i.e., P(w € W) — 1, as block-lengtHl” becomes
of deterministic and Gaussian networks. large. Let us denote that for the messagethe quantization
Assume that a single relay nodé € V inserts a noise indices are{k;} at the relays. We have an erroruf # w is
message/4 at rate B, i.e., its transmit sequencX 4 is a also in the list. This probability that’ € W), whenw # w’

was transmitted can be written as follows.

6Note the equivocation rat®. is smaller thanR, and therefore to get
perfect secrecy we need to use a further argument to keepath@fgthe in- , , ) (w') RCARNCA
formation with rate equal t&®. = Rs.p(p) — mingea 1(Xa; Yae| Xac) Pr{w — w'} = P {3{k;}:,Vi, such that (xg" ', yp, {¥; ', x; " }:) € A
perfectly secure. 8)



We can simplifyT" as,

Distinguishability:: A node ¢ can distinguish between
w andw' if ¥, # y., where the “primed” system denotes
that underw’. We can condition on the event that the correct
message produces indicés;}, and since this is a generic

index, we can carry out the entire calculation conditionad qyow if we use (16) and Lemma 2 in (10), we get

this and then average over it. Of course, we need to take into

account all possible outcomes due to the incorrect message,

and so we can rewrite (8) as,

2T R;
Pr{w — w'} < ZZ Z P {{k}};, such thatk] = k;, Vi € Q°,
i kl=1

9) as,

. w’ A k!
K # ki Vi€ Q, (<0 yp, (30 xF0Y) eAe}

Given (9), we can focus on a particular cut note that we
can reduce the summation over atb that ini € 2, since for
these the quantization index is fixdd., k} = k;,i € Q°. For
a particular cut, we can write the cut-probability expressas

= I({Vitieas; {X;}jeal{X;}5eq) (16)
— H({Vilica{X;}jev, {Viticas) + > H(Y))
icQ
9TR;
Z Z o—T[l—4e] _ 27T[[F72i€9 1%1-]745]7 (17)
i€Q k=1

whereT" is given in (16). Also since we will choosg,; =
I(YZ,Y) + € to ensure the existence of the appropriate
guantizer, we can write the exponent in (17) after some aégeb

min I(XQ;?QC|XQC) —

18
QEA(Z;5) (18)

> I(Yi;Yi|Xy)
ie0

which yields the result for a single source. The multi-seurc
extension is quite similar to this (see also [11] for a simila

proof for the deterministic and Gaussian cases).

9T R;

Pr{wﬂw'}gzsz)

i€ k=1

(10)
[1]

where
[2]

(3]
(4]
(5]

P =P {{k};, such thatk! = k;, Vi € Q°, k! # k;,Vi € Q,
(11)

(qu )aYD7{yz ) (k)})EA}

Now, let us examineg® by defining the event (which is a
“consistency” check), 6]

Fr={{ki}i, Stkl =k, Vi€ Qf, ki # ki, Vi € Q,
. (k! (k3)
({y(kl)}iE.N’m{xj ’ }jE.N'L,l) S Ae}a

where for convenience of notatlon we have denoged =

") i e Ny, andxg = x§ .j € No,Lg = 0. As before

we have also useft; = Q N N;. Therefore, we can write

aLD}

(12)
[7]

(8]

El

P=Pr{F,l=1,... (13)

10
The calculation ofP asks the probability that sequence[s ]
generated like [11]

12| [TIp@)| pUF:}icas, {x}jen)],  (14)

[12]

JEQ i€Q
behaves as if they were generated jointlye., like [13]
p({Yitiev, {X)}jev)- [14]

Lemma 2:P < 2~ T[C—4e where
I'=> H(X;)+ > HY:)+ H({Yi}icae, {X;}jeq)

JEQ 1€
(15)

[15]

— H({Yi}iev, {X;}jev)
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