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Abstract—In this paper we summarize our recent work on
information-theoretically secure wireless relay networkcommu-
nication. In such communication, the goal is to send informa-
tion between two special nodes (“source” and “destination”) in
a (memoryless) network with authenticated relays, where the
secrecy is with respect to a class of eavesdroppers. We develop
achievable secrecy rates when authenticated relays also help
increase secrecy rate by inserting noise into the network.

I. I NTRODUCTION

The seminal paper of Wyner [20] on the degraded wiretap
channel and its generalization in [5] laid the foundations for
information-theoretic secrecy in broadcast channels. In the
recent past, information-theoretic secrecy has been applied to
wireless networks with results on secrecy for MIMO broadcast
channels, multiple access channels, interference channels and
relay channels (see [10] and references therein). Cooperative
strategies in wireless networks has been an active area of
research (see [8] and references therein). In [16], [17] coopera-
tive secrecy forarbitrary wireless networks was studied1. This
work was inspired by recent (approximate) characterizations
of the wireless relay network [3].

In this paper we summarize the studies in [16], [17], [14].
We will state the results for layered relay networks2. The
main results are as follows. We first develop a “separable”
strategy to provide information-theoretic secrecy for wireless
networks, which operates on the principle of providing end-to-
end secrecy, while the network operates without presupposing
the secrecy requirement. This is developed for (layered) deter-
ministic, Gaussian and discrete memoryless networks. We also
develop a noise insertion strategy that allows a subset of the
nodes in the network to insert random noise to aid in secure
communication. We state the achievable secrecy rates for such
active relay strategies, again for deterministic, Gaussian and
discrete memoryless networks. We also state a simple outer
bound for secrecy of such networks.

The paper is organized as follows. In Section II, we set up
the problem and the notation. Some basic results for informa-
tion flow without secrecy constraints are also established.We
summarize the main results in Section III. We end with a short
discussion in Section IV.

1The case when asinglerelay node present, as an extension of the classical
relay channel to the secrecy problem was studied in [13], [9].

2A layered network (given more precisely in Definition 1, is loosely that all
paths from source to destination are the same length. As in [3], we can extend
the results for layered networks to non-layered networks using time-expansion
on the network.

II. PRELIMINARIES

We consider transmission over a relay networkG = (V ,L),
whereV is the set of vertices representing the communication
nodes in the relay network andL is the set of annotated chan-
nels between the nodes, which describe the signal interactions.
Note that these channels are not point-to-point links, rather,
they model how the transmitted signals are superimposed and
received at the receiving nodes (i.e., there is broadcast and
interference). We consider a special nodeS ∈ V as the
source of the message which wants to securely communicate to
another special nodeD ∈ V (the destination) with the help of
a set of (authenticated) relay nodesA ⊂ V in the network. We
assume that a subsetB ⊆ A of the relay nodes is allowed to
generate and use independent random messages. These special
relay nodes are called “noise inserting” nodes. The secrecy
is with respect to a set of possible (passive) eavesdropper
nodesE ⊂ V whereE is disjoint fromA ∪ {S,D}. We want
to keep all or part of the message secret if any one of the
possible eavesdropper nodesE ∈ E listens to the transmissions
in the relay network. Note that the class of eavesdroppers
that we define is discrete,i.e., we assume that all possible
eavesdroppers and their channels can be enumerated. If there
is a continuum of possible eavesdropper channels, our model
can approximate this via “quantization” of this continuum.

A. Signal interaction models

The results in this paper are stated for layered networks
formally defined as follows.

Definition 1: A relay network islayered if for every (i, j)
such thati ∈ {S} ∪ B and j ∈ V , all the paths fromi to
j have the same length (the same number of hops inL). A
non-layerednetwork is a network in which at least one node
pair (i, j) does not have this property.
Using the time-expanded networks, as used in [3], we can
extend the results for layered networks to non-layered net-
works. The network we consider is constituted by (layered)
memoryless channel interactions, which include broadcastand
multiple access interference [4] in the following ways.

Wireless interaction model:In this well-accepted model
[19], transmitted signals get attenuated by (complex) gains to
which independent (Gaussian) receiver noise is added. More
formally, the received signalyj at nodej ∈ V at time t is
given by,

yj [t] =
∑

i∈Nj

hijxi[t] + zj [t], (1)



wherehij is the complex channel gain between nodei and
j which is the annotation of the channels inL, xi is the
signal transmitted by nodei, and Nj are the set of nodes
that have non-zero channel gains toj. We assume that the
average transmit power constraints for all nodes is1 and the
additive receiver Gaussian noise is of unit variance. We use
the terminologyGaussian wireless networkwhen the signal
interaction model is governed by (1).

Deterministic interaction model:In [1], a simpler de-
terministic model which captures the essence of wireless
interaction was developed. The advantage of this model is
its simplicity, which gives insight to strategies for the noisy
wireless network model in (1). The linear deterministic model
of [1] simplifies the wireless interaction model in (1) by elim-
inating the noise and discretizing the channel gains through a
binary expansion ofq bits. Therefore, the received signaly(d)

j

which is a binary vector of sizeq is modeled as

y
(d)
j [t] =

∑

i∈Nj

Gijx
(d)
i [t], (2)

where Gij is a q × q binary matrix representing the (dis-
cretized) channel transformation between nodesi and j and
x

(d)
i is the (discretized) transmitted signal. All operations in

(2) are done over the binary field. We use the terminology
linear deterministic networkwhen the signal interaction model
is governed by (2).

Discrete memoryless interaction model:The received
signal yj at nodej ∈ V in layer l of the network, at time
t is related to the inputs at timet through a DMC specified
by, p(yj[t]|{xi[t]}i∈Nl−1

), whereNl−1 are the nodes in layer
l − 1.

To simplify the comparison between different results, we
group the most important definitions below.

Definition 2: For I ⊆ V and j ∈ V , defineΛ(I; j) to be
the set of all cuts(Ω,Ωc) that separate setI from j. More
precisely,Λ(I; j) is the set of allΩ ⊂ V such thatI ⊆ Ω and
j ∈ Ωc.

Definition 3: For a (layered) relay network the transmit
distributionp({xi}i∈V) and quantizersp(ŷi|yi), belong to the
classP if for all p ∈ P , we have

p =

[

∏

i∈V

p(xi)

]

p({yj}j∈V |{xi}i∈V)
∏

i∈V

p(ŷi|yi). (3)

For givenI ⊆ V and j ∈ V , we define an achievable rate
between betweenI andj as

R̂I;j(p) , min
Ω∈Λ(I;j)

[

I(XΩ; ŶΩc |XΩc) −
∑

i∈Ω

I(Yi; Ŷi|XV)

]

(4)

whereXV are channel inputs,YV correspond to the channel
outputs, andŶV are the quantized variables, all governed by
p ∈ P .

Definition 4: For a given transmit and quantization distri-
bution p ∈ P , a subsetψ ⊆ V , a nodej ∈ E ∪ {D}, define
Rψ;j(p) to be the set of all tuplesBψ = (Bi)i∈ψ such that

the components of the tuple are non-negative and such that for
any subsetI ⊆ ψ,

∑

i∈I Bi ≤ RI;j(p), where the quantity
RI;j(p) is the information-theoretic min-cut defined below,

RI;j(p) , min
Ω∈Λ(I;j)

I(XΩ;YΩc |XΩc). (5)

Note that there is a difference between̂RI;j(p) given in (4)
and RI;j(p) given in (5), sinceR̂I;j(p) is the achievable
rate induced by a given (quantize-map-forward) relay strategy,
whereasRI;j(p) is related to a cut-value, both evaluated for
p ∈ P .

Definition 5: For a given input and quantization distribution
p ∈ P , a subsetψ ⊆ V \{S}, and a nodej ∈ E ∪{D}, define
R̂ψ;j(p) to be the set of all tuples(B′, Bψ) = (B′, (Bi)i∈ψ)
such that the components of the tuple are non-negative and
such that for any subsetI ⊆ ψ,

B′ +
∑

i∈I

Bi ≤ R̂I∪{S};j(p).

Note that for a givenψ ⊆ V \ {S}, R̂ψ;j(p) differs from
Rψ∪{S};j(p) in two ways. First,Rψ∪{S};j(p) is related to
information-theoretic cut-values, evaluated for a particularp ∈
P , andR̂ψ;j(p) is related to the achievable rate for a particular
(quantization) relay strategy. Secondly,Rψ∪{S};j(p) imposes
constraints for all subsets ofψ including those that do not
containS, i.e., like a MAC region. In Definition 5 forR̂ψ;j(p),
all the rate-constraints involveS.

Secrecy requirements::The notion of information-
theoretic secrecy is defined through theequivocationrateRe,
which is the residual uncertainty about the message when
the observation of the strongest eavesdropper is given. More
formally, [20], [5], given a(T, ǫ)-code, the equivocation rate is
1
T

minE∈E H(W |YE), whereW is the uniformly distributed
source message,YE is the sequence of observations at eaves-
dropperE andH(·|·) denotes the (conditional) entropy [4].
The “perfect” (weak) secrecy capacity is the largest transmitted
information rateR, such thatR = Re is achievable. This
notion can be strengthened tostrong perfect secrecy, if the
equivocation is defined in bitsminE∈E H(W |YE), instead of
a rate [12]. Using the tools developed in [12], we can convert
all the results to strong secrecy, once we have proved it for
weak secrecy (see also [14]).

B. Information flow over layered networks

Here we summarize results about communication in layered
networks that form an ingredient to our main results on
secrecy over relay networks. With no secrecy requirements,
the transmission scheme is the same as developed in [3], and
is informally described below.

Network operation::Each node in the network generates
codes independently using a distributionp(xi). The sourceS
chooses a random mapping from messagesw ∈ {1, . . . , 2RT }
to its transmit typical setTxS

, and therefore we denote by
x

(w)
S , w ∈ {1, . . . , 2TR} as the possible transmit sequences

for each message. Each received sequenceyi at nodei is
quantized toŷi and this quantized sequence is randomly
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mapped onto a transmit sequencexi using a random function
xi = fi(ŷi), which is chosen such that each quantized
sequence is mapped uniformly at random to a transmit se-
quence. This random mapping can be represented by the
following construction. Generate2TRi sequencesxi from
the distribution

∏

j p(xi[j]), and generate2TRi sequences
ŷi using a product distribution

∏

j p(ŷi[j]). We denote the

2TRi sequences of̂yi as ŷ
(ki)
i , ki ∈ {1, . . . , 2TRi}. Note

that standard rate-distortion theory tells us that we need
Ri > I(Yi; Ŷi) for this quantization to be successful. Note that
since the uniformly at random mapping producesxi = fi(ŷi),
for a quantized value of indexki, we will denote it byŷ(ki)

i

and the sequence it is mapped to byx
(ki)
i = fi(ŷ

(ki)
i ).

In [3], this scheme was analyzed for deterministic and
Gaussian networks. It was established that for deterministic
networks, all rates up tominΩ∈Λ(S:D)H(YΩc |XΩc) for any
product distribution of the nodes can be achieved. For linear
deterministic networks, (2), this coincides with the cut-set
outer bound. For Gaussian networks, an approximate max-
flow, min-cut bound was established, which showed that all
rates up tominΩ∈Λ(S:D) I(XΩ;YΩc |XΩc)−κ, was achievable,
whereκ was a universal constant, independent of SNR and
channel parameters [3].

In the multisource problem, a set of sourcesS ⊂ V wish
to communicate independent messages to the destinationD

over the network. Each of the relay nodes operate as above,
except if it is also a source, then the transmitted sequence
is a (uniform random) mapping of both its message and its
received (quantized) signal. This scheme, which is a simple
extension of the scheme studied in [3], was studied for the
deterministic and Gaussian interaction models in [17], [14]. Its
simple extension to (layered) memoryless networks is stated
below.

Theorem 1:For any memoryless layered network, from a
set of sourcesS to a destinationD, we can achieve any rate
vector satisfying

∑

k∈I⊆S

Rk ≤ R̂I;j(p)

for some distributionp ∈ P defined in (3), wherêRI;j(p) is
defined in (4).

III. M AIN RESULTS

Broadly there are a sequence of three (increasing generality)
ideas to the achievability scheme.(i) Separable scheme:The
relay network is operated as described in Section II-B, but
the secrecy is induced by an end-to-end scheme overlaid on
this. (ii) Noise insertion:In addition to the above operation, a
subset of the authenticated relays insert independent messages
(noise) which are intended to disrupt the eavesdropper and are
not required to be decoded.(iii) Auxiliary variables:In addition
to the above, the source prefixes an artificial multiuser channel
in order to allow multiple auxiliary variables.

We will state the results in increasing generality in order
to clarify and interpret the results. For the simplest case,

where relay nodes operate using the quantize-map-forward
strategy described in Section II-B, without regard to secrecy
requirements, the end-to-end separable scheme achieves the
following secrecy region.

Theorem 2:For a given distributionp ∈ P defined in (3),
the (strong) perfect secrecy rate between the sourceS and
destinationD with respect to a class of eavesdroppersE , with
R̂S;D(p) given in (4), is lower bounded as

C̄s ≥ R̂S;D(p) − max
E∈E

min
Ω∈ΛE

I(XΩ;YΩc |XΩc),

where the second term is evaluated forp ∈ P .
Special cases of this result for deterministic and Gaus-

sian networks was shown in [16]. In the deterministic
case, as in [2], the relays do not quantize the inputs,
but map-and-forward it. Therefore, for deterministic net-
works the perfect secrecy rate isminΩ∈ΛD

H(YΩc |XΩc) −
maxE∈E minΩ∈ΛE

H(YΩc |XΩc). In the Gaussian case, by us-
ing a quantizer that gets distortion equal to the noise variance
(see [3]),I(Yi; Ŷi|XV) is a constant (depending on the noise
variance and not the channels), for every relay nodei.

We can improve and generalize the result in Theorem 2
by using noise insertion at an arbitrary subsetB ⊂ V . These
independent messages are not needed to be decoded anywhere,
but can be used to “jam” the eavesdroppers.

Definition 6: For an input distributionp, we define the
following function:

F (p) = max
BB∈∩E∈ERB;E(p)

[

max
x

{x : (x,BB) ∈ R̂B;D(p)}

− max
x

{x : (x,BB) ∈ ∪E∈ERB∪{S};E(p)}
]

.

Theorem 3:The (strong) perfect secrecy for any (layered)
relay network is lower bounded as

C̄s ≥ max
p∈P

F (p),

Basically the idea in Theorem 3 is that the noise insertion
effectively creates virtual MAC regions (for the eavesdroppers
and the legitimate receiver). The projection of the difference of
these regions onto the source message rate yields the secrecy
rate3. That is, the noise insertion “fills” up the eavesdropper
rate region with “junk” information, thereby protecting the
information. This notion can actually be formalized, as seen
in [14]. Also note that this is a way to think of the wiretap
channel [20], where all the junk information is at the source.
The noise insertion just distributes the origins of the junkall
over the network. This strategy was analyzed for deterministic
and Gaussian networks in [14], and the above result is its
simple generalization for memoryless networks.

In order to introduce auxiliary variables, we prefix an arti-
ficial memoryless channel in the sources, thereby modifying
the channel law for the networks. Since this does not change
the basic arguments for Theorem 3 (or its special case of

3A related strategy was developed in [9] for the Gaussian (single) relay
channel where the relay forwarded Gaussian noise along withdecoded
information.
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Theorem 2), we do not restate the result. Note that in this
case the form of the secrecy rate is the same, except that we
can also optimize over the choice of the artificial channels.
This essentially would be generalization of the approach taken
in [15] for the wiretap channel, to the case of relay networks.
Also, following the program of [12] one can focus on showing
results for weak secrecy, but (as mentioned earlier), usingthe
techniques of [12] we can obtain it for strong secrecy (see
[14] for more details).

The next result is a simple upper bound on the perfect
secrecy rate for an arbitrary number of noise-inserting nodes
presented in [17].

Theorem 4:For a single eavesdropperE,

Rs ≤ max
p({xi}i∈V )

min
Ω∈Λ(SB,D)

I(XΩ;YΩc |YE , XΩc), (6)

where, in contrast to Theorems 2 and 3, the maximization
is not only over product distributions but over all possible
p({xi}i∈V).
The statement of Theorem 4 is valid for any type of signal
interaction, including noisy channels.

IV. D ISCUSSION

In this paper we have summarized some of our studies
on a communication scenario with secrecy requirement for
wireless relay networks. We attempt to model the uncertainty
in the eavesdropper’s wireless channel, by developing the
secrecy rates for a class of eavesdropper channels. It is
possible to interpret the secret message generated as secret
key generation, and therefore we can use the techniques
outlined in this paper to generate an unconditionally (strongly)
secure key. One of the important open questions is to develop
characterizations of secrecy rates over networks. To obtain
such a characterization we need a matching converse stating
that no scheme can do better. The outer bound developed in
Theorem 4 is quite simple, and we need more sophisticated
outer bounding techniques. Another important issue to address
is the relevance of these results for wireless networks. In order
to make them more applicable, we need to ensure robustness of
these results to uncertainties in (network) channel knowledge
and eavesdroppers. An interesting approach to addressing this
might be the use of feedback. In the seminal paper [11],
Maurer showed the surprising result that feedback can allow
information-theoretic secrecy, even when the eavesdropper
channel dominates that of the legitimate receiver. The use of
feedback for network secrecy is a scarcely explored topic and
one we believe is worth pursuing. Some preliminary results in
this direction were presented in [18]. The recent results of[6],
[7] have established strategies also for key-agreement between
a set of nodes in a single-hop network. Therefore, we believe
that robustness using feedback, is another promising research
direction.
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