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Abstract— Motivated by the need to protect Cyber-Physical
Systems against attacks, we consider in this paper the problem
of estimating the state in a private and secure manner despite
active adversary attacks; adversaries that can attack the soft-
ware/hardware where state estimation is performed. To combat
such threats, we propose an architecture where state estimation
is performed across multiple computing nodes (observers). We
then show that even when ρ out of a total 3ρ +1 observers are
actively attacked: 1) using a combination of outputs from the
observers, the state is still correctly estimated; 2) the physical
plant is still correctly controlled; 3) the adversary can only
obtain limited knowledge about the state. Our approach is
inspired by techniques in cryptography for secure message
transmission and information-theoretic secrecy. In addition, our
guarantees on the secrecy of the plant’s state against corrupting
observers are based on the Cramer-Rao lower bound from
estimation theory.

I. INTRODUCTION

The security of Cyber-Physical Systems (CPSs) is a prob-
lem of increasing importance as we discover that much of
the critical infrastructure we depend on is vulnerable to cyber
attacks [1], [2], [3]. While it can be argued that many CPSs
are physically secure in the sense that maliciously intended
people cannot gain physical proximity, they can still be
remotely attacked [4]. CPSs that are remotely operated, such
as Unmanned Aerial Vehicles (UAVs) and parts of the power
grid, can be vulnerable to several attack methodologies, since
most of these systems rely on complex control algorithms
running on networked digital platforms. For example, this
could be enabled by hardware malware in the chips used in
these platforms that becomes active at the discretion of an
attacker [5].

In this paper, we are concerned with attackers that want
to control a CPS in order to alter its normal operation.
We have two objectives: (i) control the plant correctly, and
(ii) prevent the adversary from learning the plant’s state.
When state estimates are computed in a single location,
an adversary which has access to that location (through
hardware or software malware) could use the state estimate
for initiating attacks. Therefore, we propose an architecture
where state estimation is distributed across several computing
nodes (observers), as shown in Figure 1 (discussed later
in Section II). The challenge is to perform accurate state
estimation for controlling the CPS, despite an attacker which
has access to a fraction of these observers. In this paper, we
present a solution to this problem and prove that even when
ρ out of 3ρ + 1 observers are arbitrarily corrupted, we can
still operate the CPS correctly, i.e., we can still control the
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system as desired and prevent the adversary from learning
the state to any desired accuracy.

Our solution is inspired by secure message transmission
(SMT) [6], a problem studied in cryptography for finite
fields. In this problem, a message is securely transmitted
between two agents, despite an active adversary who partially
controls the communication channels. The main differences
in our setup are two-fold: (i) we operate over reals rather
than finite fields. This means that it is not possible to
give perfect secrecy guarantees and therefore we formulate
secrecy as an estimation error guarantee for any adversary.
We also give guarantees against a strong active adversary
who has complete knowledge of the system parameters and
has unbounded power (both transmit and computational).
(ii) The SMT problem is posed in a static context, where
a given message is to be transmitted. On the other hand, the
control and state estimates dynamically change over time in
our setup due to the dynamics of a physical plant, and we
need to perform these dynamic computations securely. Our
techniques are informed by making a connection between our
problem and algebraic real error correction (through Reed-
Solomon codes [7]) and estimation theory. For simplicity,
in this paper we focus on the case where there is no
measurement and actuator noise. However, the ideas can be
easily extended for this case, since we ensure that the original
state estimate based on the plant output is reconstructed in
a distributed and secure manner.

The problem of adversarial attacks in multi-agent networks
has been studied in several contexts, for example distributed
consensus [8], [9] and function computation [10], [11]. Our
goal is not consensus or distributed function computation,
but reliable control of a physical plant despite adversarial
attacks. Although consensus problems and distributed func-
tion computation through linear iterative strategies also in-
volve dynamics, we consider arbitrary linear plants and thus
cannot design the dynamics as is possible in these problems.
Differential private filtering, studied in [12], consists of a
methodology to protect the identity of the nodes contributing
information. In our case we seek to protect, not the identity,
but the state. In [13] the problem of securing the state of
the plant from a passive adversary is studied; in contrast, we
allow an active adversary who can also disrupt the legitimate
state estimation and control, and our security requirement
also differs from their setup.

The remainder of this paper is organized as follows.
Section II describes the problem setup, system architecture,
and notation. Next, we illustrate our key ideas for the case
where the adversary attacks a single observer, with Sec-
tions III and IV focusing on a passive and active adversary



respectively. In Section V, we extend our results to an active
adversary controlling ρ observers and demonstrate how we
can operate correctly despite adversarial corruptions when
we use at least 3ρ +1 observers.

II. NOTATION AND SETUP

We first describe the model for plant dynamics and then
introduce the proposed multiple observer setup. This is
followed by the adversary model in the multiple observer
setup and the constraints for the plant’s operation in the
presence of such an adversary.

A. Plant dynamics

The plant is modeled as a linear time invariant system as
shown below:

x(t +1) = Ax(t)+Bu(t), y(t) = Cx(t) (1)

where x(t) ∈ Rn is the plant’s state at time t, u(t) ∈ Rm is
input to the plant at time t, and y(t) ∈ Rp is the plant’s
output at time t. For simplicity, in the usual setting (without
security constraints), we consider a Luenberger observer [14]
for estimating the state of the plant. The Luenberger observer
receives the plant’s input and output (i.e., u(t) and y(t)) and
uses the following update rule for the state estimate:

x̂(t +1) = Ax̂(t)+Bu(t)+L(y(t)−Cx̂(t)) (2)

where x̂(t) ∈ Rn is the observer’s state estimate at time t
and L is the observer gain. The state estimate x̂(t) from
the observer is used with the external reference command
r(t) ∈ Rm (discussed in Section II-E) and a local stabilizing
controller with gain matrix K, resulting in the control law:

u(t) = r(t)+Kx̂(t). (3)

In the remainder of this paper, we will refer to the setup
defined by (1), (2), and (3) as the single observer setup.

Throughout the paper we make the simplifying assumption
that the observer estimate x̂ at time t = 0 equals the state x
at time t = 0. Although counterintuitive, this results in no
loss of generality since the secrecy and security guarantees
we provide under this assumption extend to the case where
x̂(0) 6= x(0) (see Appendix A for details). Under this assump-
tion, the plant dynamics can be simplified as follows:

x(t +1) = Ax(t)+B(Kx(t)+ r(t)) = Aclx(t)+Br(t) (4)

where Acl = A+BK. Without loss of generality, we assume
that x(0) = 0 (initial state of the plant). Hence, given a
sequence of inputs r(0),r(1), . . .r(l − 1), the sequence of
plant states can be written as follows:

x(1)
x(2)

...
x(l)

=


B 0 . . . 0

AclB B . . . 0
...

...
. . . 0

Al−1
cl B Al−2

cl B . . . B




r(0)
r(1)

...
r(l−1)

= Jlr0:l−1.

(5)

As shown above, we use the notation rt1:t2 for[
rT (t1) rT (t1 +1) . . . rT (t2)

]T where T denotes
matrix transposition.

B. Multiple observer setup

In the multiple observer setup, the state observer, as shown
in (2), is distributed among multiple computing nodes. Fig-
ure 1 shows the multiple observer setup (with d observers).
The external reference input r(t) and plant output y(t) are
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Fig. 1. A d-observer setup for state estimation.

sent to encoders ENCI and ENCO, respectively, as opposed to
being directly sent to the observers. Observer i∈ {1,2, . . . ,d}
receives at time t an encoded version of r(t), denoted by
ri(t), from ENCI and an encoded version of y(t), denoted
by yi(t) from ENCO. In the absence of any adversarial
corruptions, the state estimate update rule for observer i is
as shown below:

x̂i(t +1) = Ax̂i(t)+B(Kx̂i(t)+ ri(t))+L(yi(t)−Cx̂i(t))
(6)

where x̂i(t) is the state estimate of observer i at time t.
Clearly, the above update rule is similar to (2) in the single
observer setup; the main difference lies in using ri(t) and
yi(t) instead of r(t) and y(t).

In the absence of any adversarial corruptions, the decoder
DEC receives ri(t) and Kx̂i(t) for i ∈ {1,2, . . . ,d} as shown
in Figure 1. The number d of observers and the design
of ENCI , ENCO, and DEC is based on the specifications
(described in Section II-C) of the adversary who can corrupt
a fraction of the observers. We assume that the encoders have
access to random number generators and there is no shared
randomness between the encoders and the decoder.

C. Adversary model

We now describe the adversary model in the context of
the multiple observer setup described in Section II-B. In
this paper, we consider two types of adversaries: passive
and active. The difference between these two types is in the
nature of adversarial behavior.

Passive adversary: A ρ-passive adversary can tap into
any subset of ρ observers in a d-observer setup and access
all the inputs to the particular subset of observers. Such
adversaries are also referred to as honest-but-curious in
the cryptography literature since they do not affect the
normal operation of a protocol but just try to infer useful



information. In the multiple observer setup, the objective of
a ρ-passive adversary is to estimate useful information such
as the plant’s state sequence or the reference input sequence
based on inputs to the set of tapped observers.

Active adversary: A ρ-active adversary is more power-
ful than a ρ-passive adversary. It not only has access to all
the inputs to the set of affected observers (any ρ observers
in a d-observer setup), but can also inject errors (of arbitrary
magnitude) in the outputs of attacked observers. Further-
more, the adversary can also alter the internal operations
(e.g., state estimate update rule) of the attacked observers.
Since the outputs from the observers influence the input to
the plant, an active adversary can potentially alter the normal
operation of the plant.

In both the cases (passive and active), the adversary has
unbounded computational power. It also has knowledge of
the plant parameters, and the operations done by ENCI ,
ENCO, and DEC. The adversary does not have access to
the random number generators in the input encoder (ENCI)
and output encoder (ENCO); this is essentially the source of
secrecy in the multiple observer setup.

D. Constraints: correctness and secrecy

In a d-observer setup, with initial plant state x(0) =
0 (known to the adversary) and external reference input
sequence r0:l−1 (unknown to the adversary) we consider the
following constraints:

a) Correctness: The evolution of the plant in the d-
observer setup is exactly the same as in the single observer
setup; even in the presence of an active adversary which
can arbitrarily change the outputs from the set of attacked
observers. Formally, for any given input sequence r0:l−1,
the plant’s state sequence is x1:l = Jlr0:l−1 (as shown in (5)
for the single observer setup with no adversary) despite the
attack of an active adversary.

b) Secrecy: An adversary (ρ-active or ρ-passive) hav-
ing access to the inputs of any ρ observers should have
limited knowledge of the external reference input sequence
r0:l−1 and plant’s state sequence x1:l . Formally, if Er,0:l−1
and Ex,1:l are the error covariance matrices corresponding to
the adversary’s estimate of r0:l−1 and x1:l , then the following
should be satisfied:

tr(Er,0:l−1)> φr > 0, tr(Ex,1:l)> φx > 0 (7)

where tr(·) denotes the matrix trace operation, and φr and
φx are constant design parameters which can be adjusted for
any desired level of secrecy. It should be noted that since we
assume x̂(0) = x(0), x(0) is known to each observer; but the
encoded inputs and encoded outputs are responsible for the
observer’s uncertainty about r0:l−1 and x1:l .

An important aspect of the d-observer setup is the min-
imum number dmin of observers required to ensure the
constraints mentioned above against an adversary (ρ-active
or ρ-passive). Clearly, dmin depends on ρ , and whether the
adversary is active or passive. Using arguments similar to
[6], it can be easily shown that dmin ≥ ρ +1 for a ρ-passive
adversary, and dmin ≥ 3ρ +1 for a ρ-active adversary.

E. Discussion

The described setup is appropriate for Cyber-Physical
Systems that are remotely operated. A case in point are Un-
manned Air Vehicles (UAV) where state estimation and the
computation of local controllers is performed onboard while
the reference input r is remotely sent by a pilot. Another
typical example are SCADA systems where local observers
and controllers regulate different physical quantities based on
set points that are remotely sent from a central supervisor. In
all of these scenarios, we envision attacks on the communica-
tion between the operator and the local observers/controllers
and between the local observers/controllers and the actuators.
We also envision either software or hardware attacks on
the observers/local controllers. We exclude from our model
attacks on the actuators since an attacker that can command
an actuator can immediately cause damage to the plant.
Hence, actuators need to be physically hardened to withstand
attacks. We also exclude attacks to the operator since in many
situations, e.g., UAVs, it is located in a secure facility.

III. 1-PASSIVE ADVERSARY

As mentioned in Section II-D, dmin ≥ 2 for a 1-passive ad-
versary. In this section, we show that dmin = 2 for a 1-passive
adversary by designing a 2-observer setup (in Section III-A)
and showing that the correctness and secrecy constraints are
satisfied (in Sections III-B and III-C respectively).

A. 2-observer setup

The operations of the encoders, observers (indexed by i),
and decoder in the 2-observer setup are described below.

Encoder: The following operations are done at the input
encoder ENCI which receives r(t) as input:

r1(t) =
r(t)

2
+θθθ(t), r2(t) =

r(t)
2
−θθθ(t) (8)

where θθθ(t) ∈ Rm is a random vector drawn from a multi-
variate Gaussian distribution with zero mean and covariance
matrix σ2Im (Im is the identity matrix of dimension m and
σ is a positive real number). In the remainder of this paper,
we use the notation N (µµµ,ΣΣΣ) to denote the multivariate
Gaussian distribution with mean µµµ and covariance matrix
ΣΣΣ. It should be noted that θθθ(t) is intentionally generated
by the input encoder ENCI and is i.i.d. (independent and
identically distributed) over time. Similarly to ENCI , the
output encoder ENCO receives y(t) as input and performs
the following operations:

y1(t) =
y(t)

2
+δδδ (t), y2(t) =

y(t)
2
−δδδ (t) (9)

where δδδ (t) is intentionally generated random vector ∼
N
(
0,σ2Ip

)
and is i.i.d. over time. We justify the use of the

Gaussian distribution for θθθ(t) and δδδ (t) while analyzing the
secrecy constraint in Section III-C. Moreover, the random
vectors generated by ENCO and ENCI are assumed to be
independent.



Observer: For i ∈ {1,2}, observer i receives ri(t) and
yi(t) at time t, and uses update rule (6) for its state estimate
x̂i(t). Recall that we assume that observer i has knowledge
of x(0) and thus sets its initial state estimate as x̂i(0) =

x(0)
2 .

Decoder: For i ∈ {1,2}, the decoder receives Kx̂i(t)
and ri(t) at time t, and simply adds all its inputs to obtain
u(t) (fed to the plant) as shown below:

u(t) = (Kx̂1(t)+ r1(t))+(Kx̂2(t)+ r2(t)) . (10)

B. Correctness

For correctness, given any external reference input se-
quence r0:l−1, we need the plant’s state sequence x1:l to be
exactly as shown in (5). We prove the following claim, which
is sufficient to show correctness.

Claim 1: Assuming the operations of ENCI , ENCO, DEC,
and observers are as described in Section III-A, the following
is true for all t ≥ 0:

x̂1(t +1)+ x̂2(t +1) = Aclx(t)+Br(t) = x(t +1). (11)
Proof: We show this by induction as follows. For the

base case t = 0:

x̂1(1)+ x̂2(1)
(a)
= Ax̂1(0)+B(Kx̂1(0)+ r1(0))+L(y1(0)−Cx̂1(0))
+Ax̂2(0)+B(Kx̂2(0)+ r2(0))+L(y2(0)−Cx̂2(0))

(b)
= A(x̂1(0)+ x̂2(0))+B(Kx̂1(0)+Kx̂2(0)+ r(0))
+L(y(0)−C(x̂1(0)+ x̂2(0)))

(c)
= Ax(0)+B(Kx(0)+ r(0))+L(y(0)−Cx(0))
= Aclx(0)+Br(0) (12)

where (a) follows from the state estimate update rule (6)
at the observers, (b) follows from r1(t)+ r2(t) = r(t) and
y1(t)+ y2(t) = y(t), and (c) follows from x̂1(0) = x̂2(0) =
x(0)

2 . The plant’s state at time t = 1 is as follows:

x(1) = Ax(0)+B(Kx̂1(0)+Kx̂2(0)+ r1(0)+ r2(0))
= Aclx(0)+Br(0) . (13)

Using (12) and (13), we have x̂1(1) + x̂2(1) = Aclx(0) +
Br(0) = x(1). For the inductive step, we assume that the
claim is true up to time t0 and then prove it for time t0 +1
as shown below:

x̂1(t0 +1)+ x̂2(t0 +1)
= Ax̂1(t0)+B(Kx̂1(t0)+ r1(t0))+L(y1(t0)−Cx̂1(t0))

+Ax̂2(t0)+B(Kx̂2(t0)+ r2(t0))+L(y2(t0)−Cx̂2(t0))
(a)
= Ax(t0)+B(Kx(t0)+ r(t0))+L(y(t0)−Cx(t0))
= Aclx(t0)+Br(t0) (14)

where (a) follows from the induction hypothesis. Similarly,

x(t0 +1)
= Ax(t0)+B(Kx̂1(t0)+Kx̂2(t0)+ r1(t0)+ r2(t0))

= Aclx(t0)+Br(t0). (15)

This completes the proof of the claim.

Since x(t + 1) = Aclx(t)+Br(t), the plant’s state sequence
x1:l given input sequence r0:l−1 is exactly as shown in (5).

C. Secrecy

In order to perform the secrecy analysis we start by
listing the observations of a 1-passive adversary (we consider
the case when the 1-passive adversary taps observer 1; the
analysis for observer 2 follows by symmetry). The adversary
knows the initial state estimate x̂1(0)=

x(0)
2 = 0 and observes,

up to time l, the sequence of encoded reference inputs
r1(0),r1(1), . . .r1(l−1) and the sequence of encoded sensor
measurements y1(1),y1(2), . . .y1(l) fed to observer 1. Hence,
the information available to the adversary can be summarized
as the vector vl :

vl =



Cx(1)+2δδδ (1)
Cx(2)+2δδδ (2)

...
Cx(l)+2δδδ (l)
r(0)+2θθθ(0)
r(1)+2θθθ(1)

...
r(l−1)+2θθθ(l−1)


(a)
=

[
(Il⊗C)Jl

Iml

]
r0:l−1 +2

[
δδδ 1:l

θθθ 0:l−1

]
= Hlr0:l−1 + zl (16)

where (a) follows from correctness, proved in Section III-
B (Jl is defined in (5)), and ⊗ denotes Kronecker product.
Equation (16) shows that the adversary’s observations are
affine on the reference input r. The adversary’s objective
is then to estimate r0:l−1. Note that zl is unknown to the
adversary although it knows the distribution from which the
elements of zl are drawn. In this context, there can be several
choices for the estimation criterion (e.g., biased or unbiased)
[15], [16]. For concreteness, in this paper we give guarantees
on the accuracy of a minimum variance unbiased (MVU)
estimate [15] made by the adversary; the guarantees can be
easily extended for biased estimators using results in [16].
Given (16), the accuracy of the adversary’s MVU estimate
of r0:l−1 is fundamentally limited by the Cramer-Rao lower
bound (CRLB) [15]. The CRLB for the affine model (16) can
be easily evaluated (see [15] for details) as shown below:

Er,0:l−1 �
(
HT

l ΣΣΣ
−1
z Hl

)−1

= 4σ
2 (HT

l Hl
)−1

(17)

where Er,0:l−1 is the error covariance matrix for the adver-
sary’s MVU estimate of r0:l−1, and ΣΣΣz is the covariance
matrix of zl (in (16)). The above result also implies that
the trace of Er,0:l−1 is not less than 4σ2tr

((
HT

l Hl
)−1
)

.
The plant’s state sequence x1:l is the linear function x1:l =

Jlr0:l−1 of the input sequence. Hence, the CRLB for x1:l can
be derived from the CRLB for r0:l−1 [15] as shown below:

Ex,1:l � 4σ
2Jl
(
HT

l Hl
)−1 JT

l . (18)



Equations (17) and (18) show that by suitably adjusting σ we
can impose any desired lower bound on the accuracy of the
reference input and state estimates made by the adversary.
Therefore, the secrecy constraint defined in (7) is satisfied.
As a final remark we note that the Gaussian distribution is the
best choice to generate the vector zl since it is shown in [17]
that it leads to the worst CRLB for an MVU estimator.

IV. 1-ACTIVE ADVERSARY

As mentioned in Section II-D, dmin ≥ 4 is necessary for a
1-active adversary. In this section, we show that dmin = 4 is
sufficient for a 1-active adversary by designing a 4-observer
setup (in Section IV-A) and showing that the correctness and
secrecy constraints are satisfied (in Sections IV-B and IV-C
respectively).

A. 4-observer setup

The operations of the encoders, observers (indexed by i)
and decoder in the 4-observer setup are described below.

Encoders: For i ∈ {1,2,3,4}, the following operation
is done at the input encoder ENCI which receives r(t) as
input:

ri(t) = r(t)+λiθθθ(t) (19)

where θθθ(t) ∈ Rm is a random vector ∼N
(
0,σ2Im

)
gener-

ated by ENCI and is distributed i.i.d. over time. The scaling
factor λi ∈ R−{0} is the same for all time t for observer
i. Similarly, the following operation is done at the output
encoder ENCO:

yi(t) = y(t)+λiδδδ (t) (20)

where δδδ (t) ∈ Rp is a random vector ∼N
(
0,σ2Ip

)
gener-

ated by ENCO and is distributed i.i.d. over time. The scaling
factor λi is same as the one used by ENCI for observer i. The
adversary is assumed to have knowledge of the scaling factor
λi for each observer. Also, λ1,λ2,λ3 and λ4 are assumed to
be distinct (needed for proving correctness in Section IV-
B). The random vectors generated by ENCI and ENCO are
assumed to be independent.

Observers: The operations done at an observer which
is not under the influence of an adversary are described
below. For i ∈ {1,2,3,4}, observer i receives ri(t) and yi(t)
at time t and uses update rule (6) for its state estimate x̂i(t).
Since we assume that x̂(0) = x(0) observer i sets its initial
state estimate as x̂i(0) = x(0). However, a 1-active adversary
can attack any of the observers and arbitrarily change its
operation.

Decoder: For i ∈ {1,2,3,4}, the decoder DEC receives
r̃i(t) and k̃i(t) at time t. Under normal operation (with no
adversarial errors) r̃i(t) = ri(t) and k̃i(t) = Kx̂i(t). When
an adversary injects errors in the outputs of observer i, the
decoder receives r̃i(t) = ri(t)+ ei,r(t) and k̃i(t) = Kx̂i(t)+
ei,k(t), where ei,r(t) and ei,k(t) are errors (of arbitrary magni-
tude) introduced by the adversary. In this 1-active adversary
setting, the decoder does not know a priori which observer
is under the adversary’s influence. Having received r̃i(t) and

k̃i(t), the decoder computes the following for all pairs (i, i′)
such that i, i′ ∈ {1,2,3,4} and i < i′:

sii′,r(t) =
λi′

λi′ −λi
r̃i(t)−

λi

λi′ −λi
r̃i′(t) (21)

sii′,k(t) =
λi′

λi′ −λi
k̃i(t)−

λi

λi′ −λi
k̃i′(t). (22)

There are
(4

2

)
= 6 possible sii′,r(t) and the majority value

(most frequently occurring) among these is denoted by s∗r (t).
Similarly, the majority value for sii′,k(t) is denoted by s∗k(t).
We show in Section IV-B that the majority value for both
sii′,r(t) and sii′,k(t) is always unique (i.e., a tie never occurs).
The decoder adds s∗r (t) and s∗k(t) to obtain u(t) (fed to the
plant) as shown below:

u(t) = s∗r (t)+ s∗k(t). (23)

B. Correctness

We first prove the following claim which we use in the
proof of correctness.

Claim 2: Assuming λ1,λ2,λ3 and λ4 are distinct and non-
zero, and the operations of ENCI , ENCO, DEC and observers
are as described in Section IV-A, the following are true (even
in the presence of a 1-active adversary):

(a) For time t ≥ 0, s∗r (t) = r(t).
(b) If observer i is not under the adversary’s influence and

Kx̂i(t) = Kx(t)+λiK∆∆∆(t) holds at time t, then s∗k(t) =
Kx(t).

where ∆∆∆(t) ∈ Rn in (b) is arbitrary.
Proof: We first describe the proof of (a) as follows.

When the adversary does not inject errors in r̃i(t) (i.e., r̃i(t)=
ri(t)= r(t)+λiθθθ(t)), it is easy to verify that all the 6 possible
sii′,r(t) are equal to r(t); hence s∗r (t) = r(t). When there is
a 1-active adversary, the majority value s∗r (t) is still unique
and equal to r(t). To check this, consider the case when a
non-zero error e1,r(t) is introduced by the adversary in r̃1(t)
(i.e., r̃1(t) = r1(t)+ e1,r(t)). Due to this error e1,r(t):

s12,r(t) =
λ2

λ2−λ1
e1,r(t)+ r(t)

s13,r(t) =
λ3

λ3−λ1
e1,r(t)+ r(t)

s14,r(t) =
λ4

λ4−λ1
e1,r(t)+ r(t)

s23,r(t) = s34,r(t) = s24,r(t) = r(t).

Due to having distinct λ1,λ2,λ3 and λ4, s12,r(t) 6= s13,r(t) 6=
s14,r(t) while s23,r(t),s34,r(t) and s24,r(t) lead to the majority
value r(t). Similarly, it can be easily verified for the case
when the adversary attacks observer i ∈ {2,3,4} that the
majority value s∗r (t) is unique and equal to r(t). The proof of
(b) is similar to the proof of (a), and we skip it for brevity.

The following claim is sufficient to show correctness.
Claim 3: Assuming λ1,λ2,λ3 and λ4 are distinct and non-

zero, and the operations of ENCI , ENCO, DEC and observers
are as described in Section IV-A, the following are true for
time t ≥ 0:



(a) u(t) = Kx(t)+ r(t).
(b) If observer i is not under the adversary’s influ-

ence, x̂i(t) = x(t) + λi∆∆∆(t). In addition, ∆∆∆(t) ∈ Rn

satisfies the following: ∆∆∆(0) = 0 and ∆∆∆(t + 1) =
(A+BK−LC)∆∆∆(t)+Bθθθ(t)+Lδδδ (t).

Proof: The proof is by induction. For the base case
t = 0, if observer i is not under the adversary’s influence,
x̂i(0) = x(0) and ∆∆∆(t) = 000; hence x̂i(0) = x(0) + λi∆∆∆(0).
Since Kx̂i(0) = Kx(0) + λiK∆∆∆(0) holds in this case, we
have s∗k(0) = Kx(0) and s∗r (0) = r(0) (by Claim 2). Hence,
u(0) = s∗k(0)+ s∗r (0) = Kx(0)+ r(0). This completes proof
of claim for the the base case.

For the inductive step, we assume that the claim is true up
to time t0 and then show that it holds for time t0 +1. Using
the inductive hypothesis u(t0) = Kx(t0)+ r(t0),

x(t0 +1) = Ax(t0)+u(t0) = Aclx(t0)+Br(t0). (24)

The state estimate update at time t0 for observer i (which is
not under the adversary’s influence) is as shown below:

x̂i(t0 +1)
(a)
= Ax̂i(t0)+B(Kx̂i(t0)+ ri(t0))+L(yi(t0)−Cx̂i(t0))
(b)
= A(x(t0)+λi∆∆∆(t0))+B(Kx(t0)+λiK∆∆∆(t0)+ r(t0)+λiθθθ(t0))

+L(Cx(t0)+λiδδδ (t0)−Cx(t0)−λiC∆∆∆(t0))

= Aclx(t0)+Br(t0)+λi∆∆∆(t0 +1)
(c)
= x(t0 +1)+λi∆∆∆(t0 +1) (25)

where (a) follows from the estimate update rule (6) at
observer i, (b) follows from the inductive hypothesis x̂i(t0) =
x(t0) + λi∆∆∆(t0), and (c) follows from (24). Also, (25) im-
plies Kx̂i(t0 + 1) = Kx(t0 + 1) + λiK∆∆∆(t0 + 1). Hence, we
have s∗k(t0 + 1) = Kx(t0 + 1) and s∗r (t0 + 1) = r(t0 + 1) (by
Claim 2). Using the above results, we have the following:

u(t0 +1) = s∗k(t0 +1)+ s∗r (t0 +1) = Kx(t0 +1)+ r(t0 +1).

This completes the proof of the claim for time t0 +1.
Since u(t) = Kx(t)+r(t) leads to the plant’s state sequence
shown in (5), the correctness constraint is satisfied.

C. Secrecy

The observations of a 1-active adversary in the 4-observer
setup are similar to that of a 1-passive adversary in Sec-
tion III-C, i.e., observations are in the form of an affine model
in the parameter r0:l−1, similar to (16)). For an adversary
attacking observer i, the CRLB leads to the following bound:

Er,0:l−1 � λ
2
i σ

2 (HT
l Hl

)−1
(26)

where Er,0:l−1 is the error covariance matrix for adversary’s
MVU estimate of r0:l−1, and Hl is as defined in (16).

V. ρ -ACTIVE ADVERSARY

In this section, we generalize the results in Section IV from
a 1-active adversary to a ρ-active adversary. This generaliza-
tion is based on a class of error correcting codes called Reed-
Solomon codes [18], [19], [7]; we briefly describe the idea

behind this generalization in Section V-A. We then describe
the proposed 3ρ + 1-observer setup (in Section V-B) and
prove that it satisfies the correctness and secrecy constraints
(in Sections V-C and V-D respectively) against a ρ-active
adversary. As a result, dmin = 3ρ+1 for a ρ-active adversary.

A. Reed-Solomon codes

Consider the following polynomial in λ ∈ R:

f (λ ) =
ρ

∑
j=0

c jλ
j (27)

with coefficients c j ∈ R and degree at most ρ . For i ∈
{1,2, . . . ,w} let di be the evaluation of f at distinct and
non-zero points λi, i.e., di = f (λi). Clearly, when w = ρ +1,
the evaluations d1,d2, . . .dw are sufficient to reconstruct the
polynomial. Finding the value of c0 = f (0) from d1,d2, . . .dw
involves Lagrange interpolation (a linear combination of
d1,d2, . . .dw). Now, consider the problem of finding c0 from
evaluations d1,d2, . . .dw when any q of the evaluations are
erroneous (arbitrarily different from the true evaluation). It
can be shown that c0 can still be recovered in the presence of
such erroneous evaluations if the following constraint holds
[18]:

q <
w−ρ

2
. (28)

The process of finding c0 in the above problem is equivalent
to finding the polynomial which fits the maximum number
of evaluations [18]. But the above problem is also the same
as decoding a Reed-Solomon code where c0 is a message
symbol and d1,d2, . . .dw are codeword symbols [18], [19].
In such a setting, the problem translates to decoding the
message from codeword symbols despite errors in some of
the codeword symbols. This connection primarily offers an
intuitive insight into the design and error correcting nature
of Reed-Solomon codes.

The above connection provides an alternative interpreta-
tion of the decoder’s operation in the 4-observer setup in
Section IV-A. In the absence of adversarial corruptions, the
decoder receives ri(t) = r(t)+λiθθθ(t) which is essentially a
system of polynomials (of degree at most 1) evaluated at
λ = λi. Hence, the task of finding r(t) using evaluations
r̃1(t), r̃2(t), . . . r̃4(t) (with at most one erroneous evaluation)
is equivalent to a decoding a Reed-Solomon code. For
decoding a Reed-Solomon code, the approach of finding
the best fitting polynomial still works but there exist faster
methods (e.g., Berlekamp-Welch algorithm [20]) whose time
complexity is polynomial in number of evaluations. Simi-
larly, due to the invariant x̂i(t) = x(t) + λi∆∆∆(t) (Claim 3)
in the absence of adversarial corruptions, the same inter-
pretation (based on polynomial evaluations) can be made
for recovering Kx(t) at the decoder. Hence, the invariants
(ri(t) = r(t) + λiθθθ(t) and x̂i(t) = x(t) + λi∆∆∆(t)) for the 4-
observer setup essentially realize a Reed-Solomon code over
reals and enable the decoder to recover r(t) and Kx(t) despite
the presence of a 1-active adversary.



From the perspective of secrecy, following the Reed-
Solomon code interpretation, an adversary also gets to ob-
serve some of the codewords (i.e., ri(t)) and tries to estimate
the message r(t). As proved in Section IV-C, the presence
of intentionally generated random vectors θθθ(t) limits the
adversary’s accuracy in recovering r(t). We generalize the
ideas discussed above for ensuring correctness and secrecy
in a 3ρ +1-observer setup against a ρ-active adversary (by
using polynomials of degree at most ρ).

B. 3ρ +1-observer setup

The operations of the encoders, observers (indexed by i)
and decoder are described below.

Encoders: For i ∈ {1,2, . . .3ρ +1}, the following oper-
ation is done at ENCI which receives r(t) as input:

ri(t) = r(t)+
ρ

∑
j=1

λ
j

i θθθ j(t) (29)

where θθθ j(t) is a random vector ∼ N
(
0,σ2Im

)
generated

by ENCI and is distributed i.i.d. over time. Also, for j 6= j′,
θθθ j(t) and θθθ j′(t) are independent. The scaling factor λi ∈
R−{0} is the same for all time t for observer i (and is
assumed to be distinct across the observers i.e., λi 6= λi′ where
i 6= i′). Clearly, ri(t) corresponds to the evaluation of r(t)+
∑

ρ

j=1 λ jθθθ j(t) at λ = λi. Similarly, the following operation is
done by the output encoder ENCO:

yi(t) = y(t)+
ρ

∑
j=1

λ
j

i δδδ j(t) (30)

where δδδ j(t) is a random vector ∼N
(
0,σ2Ip

)
generated by

ENCO and is distributed i.i.d. over time. Also, for j 6= j′,
δδδ j(t) and δδδ j′(t) are independent. The adversary is assumed
to have knowledge of the scaling factor λi for each observer.
The random vectors generated by ENCI and ENCO are
assumed to be independent.

Observers: The operations done at an observer which is
not under the influence of an adversary are described below.
For i ∈ {1,2, . . .3ρ + 1}, observer i receives ri(t) and yi(t)
at time t and uses update rule (6) for its state estimate x̂i(t).
Observer i has knowledge of x(0) and sets its initial state
estimate as x̂i(0) = x(0). A ρ-active adversary can attack
any ρ observers and arbitrarily change their operations.

Decoder: For i ∈ {1,2, . . .3ρ + 1}, the decoder DEC
receives r̃i(t) and k̃i(t) at time t. Under normal operation
(with no adversarial errors) r̃i(t) = ri(t) and k̃i(t) = Kx̂i(t).
When an adversary injects errors in the outputs of observer
i, the decoder receives r̃i(t) = ri(t) + ei,r(t) and k̃i(t) =
Kx̂i(t)+ei,k(t), where ei,r(t) and ei,k(t) are errors of arbitrary
magnitude introduced by the adversary. As a consequence of
correctness proved in Section V-C, r̃i(t) and k̃i(t) correspond
to evaluations of a system of polynomials (of degree at
most ρ) at λi; these evaluations are erroneous if observer
i is attacked by an adversary. The decoder does not know
a priori which ρ (out of 3ρ + 1) observers are under the
adversary’s influence. In this setting, the task of finding
r(t) and Kx(t) is equivalent to decoding a Reed-Solomon

code. For the sake of clarity, we describe below a decoding
method which finds the best fitting polynomial to decode the
underlying Reed-Solomon code1. Having received r̃i(t) and
k̃i(t) from all the 3ρ + 1 observers, the decoder computes
the following for all ρ + 1-tuples

(
i1, i2, . . . iρ+1

)
such that

i1, i2, . . . iρ+1 ∈ {1,2, . . .3ρ +1} and i1 < i2 < .. . < iρ+1:

si1i2...iρ+1,r(t)

= POLY
(

0, r̃i1(t), r̃i2(t), . . . , r̃iρ+1(t),λi1 ,λi2 . . .λiρ+1

)
(31)

si1i2...iρ+1,k(t)

= POLY
(

0, k̃i1(t), k̃i2(t), . . . , k̃iρ+1(t),λi1 ,λi2 . . .λiρ+1

)
(32)

where POLY
(

b0,d1,d2, . . .dρ+1,λi1 ,λi2 . . .λiρ+1

)
considers

the function f(λ ) =∑
ρ

j=0 c jλ
j (where λ is a scalar parameter

and c j are vector coefficients) and finds the value of f(b0) by
assuming that f(λi1) = d1, f(λi2) = d2, . . . f

(
λiρ+1

)
= dρ+1.

This process simply involves taking a linear combination of
d1,d2, . . .dρ+1 (i.e., Lagrange interpolation).

There are
(3ρ+1

ρ+1

)
possible si1i2...iρ+1,r(t) and the majority2

value (most frequently occurring) among these is denoted
by s∗r (t). Similarly, the majority value for si1i2...iρ+1,k(t) is
denoted by s∗k(t). The decoder adds s∗r (t) and s∗k(t) to obtain
u(t) (fed to the plant) as shown below:

u(t) = s∗r (t)+ s∗k(t). (33)

C. Correctness

For correctness of the 3ρ + 1-observer setup, we need
to show that despite the presence of ρ active adversaries,
the plant’s state sequence x1:l is exactly as shown in (5)
for any external reference input sequence r0:l−1. The proof
follows along the same lines as that for a 1-active adversary
in Section IV-B, and utilizes the connection to Reed-Solomon
codes described in Section V-A. We skip the details here for
brevity.

D. Secrecy

For the secrecy analysis, consider the case when the
adversary attacks observers a1,a2, . . .aρ ∈ {1,2, . . .3ρ + 1}.
By listing all the inputs to the observers under the adversary’s
influence, the observations of the adversary form an affine
model (similar to (16)) with parameter r0:l−1. The CRLB for
the MVU estimator for r0:l−1 in this case is as shown below:

Er,0:l−1 �
σ2
(
HT

l Hl
)−1

ηηη (ΛΛT )−1
ηηηT

(34)

where Er,0:l−1 is the error covariance matrix for the MVU
estimate of r0:l−1, ηηη = [1 1 . . .1], Hl is as defined in (16)

1This is similar to the decoder’s operation in the 4-observer setup in
Section IV-A but can be replaced by faster Reed-Solomon decoding methods
like Berlekamp-Welch [20].

2It can be shown that the majority value is always unique in this case; a
tie never occurs.



and matrix Λ is as shown below:

Λ =


λa1 λ 2

a1
. . . λ

ρ
a1

λa2 λ 2
a2

. . . λ
ρ
a2

...
...

...
...

λaρ
λ 2

aρ
. . . λ

ρ
aρ

 . (35)

Remark 1: It can be shown that without secrecy con-
straints, dmin = 2ρ +1 against a ρ-active adversary; if 2ρ +
1 < d < 3ρ + 1, secrecy against d− (2ρ + 1) compromised
observers can still be guaranteed. This can be realized by
using a polynomial of degree d − (2ρ + 1) (instead of a
polynomial of degree ρ as done in the case d = 3ρ +1).
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APPENDIX

A. Effect of error in initial state estimate

In the single observer setup described in Section II-A, we
assumed x̂(0) = x(0). We show in this appendix that all the
secrecy guarantees remain unchanged even if this assumption
is not satisfied. In general, the initial state estimate can be
written as:

x̂(0) = x(0)− e(0) (36)

where e(0) 6= 0 is the error in the state estimate at time t = 0.
Since we are using Luenberger observers, the dynamics of
the estimate error e(t) is given by:

e(t +1) = x(t +1)− x̂(t +1) = (A−LC)e(t) (37)

while the state evolution is governed by:

x(t) = At
clx(0)+

t−1

∑
j=0

At−1− j
cl Br( j)−

t−1

∑
j=0

At−1− j
cl BKe( j) .

(38)

Let us now describe the implications of e(0) 6= 0 for a
1-passive adversary in the 2-observer setup described in
Section III-A. It can be easily shown that the dynamics
of the plant in the 2-observer setup is same as with a
single observer (as shown in (38)); in this case e(0) =
x(0)− x̂1(0)− x̂2(0) where x̂1(0) and x̂2(0) are arbitrary
initial state estimates at observers 1 and 2. The information
an adversary tapping observer 1 receives from the encoded
outputs y1(1),y1(2), . . .y1(l) can be written as shown below:

Cx(1)
Cx(2)

...
Cx(l)

+2


δδδ (1)
δδδ (2)

...
δδδ (l)



=


CAcl
CA2

cl
...

CAl
cl

x(0)+


CB 0 . . . 0

CAclB CB . . . 0
...

...
. . . 0

CAl−1
cl B CAl−2

cl B . . . CB

r0:l−1

+


CBK 0 . . . 0

CAclBK CBK . . . 0
...

...
. . . 0

CAl−1
cl BK CAl−2

cl BK . . . CBK

e0:l−1 +2δδδ 1:l .

If we assume that the adversary knows e(0) (and hence
knows x(0) and e(1),e(2), . . .e(l− 1)), the resulting set of
equations seen by the adversary is same as in Section III-
C where the assumption x̂(0) = x(0) was used. Hence, any
secrecy guarantee under the assumption x̂(0) = x(0) also
holds when x(0) 6= x̂(0). This observation can be easily
generalized for all the results in this paper, hence justifying
the assumption x̂(0) = x(0).


