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Abstract—Motivated by the need to secure cyber-physical
systems against attacks, we consider the problem of estimating
the state of a noisy linear dynamical system when a subset of
sensors is arbitrarily corrupted by an adversary. We propose a
secure state estimation algorithm and derive (optimal) bounds
on the achievable state estimation error. In addition, as a result
of independent interest, we give a coding theoretic interpretation
for prior work on secure state estimation against sensor attacks
in a noiseless dynamical system.

I. INTRODUCTION

Cyber-physical systems (CPS) manage the vast majority of
today’s critical infrastructure and securing such CPS against
malicious attacks is a problem of growing importance [1]. As
a stepping stone towards securing complex CPS deployed in
practice, several recent works have studied security problems
in the context of linear dynamical systems [1], [2], [3], [4], [5],
[6] leading to a fundamental understanding of how the system
dynamics can be leveraged for security guarantees. With this
motivation, in this paper we focus on securely estimating the
state of a linear dynamical system from a set of noisy and
maliciously corrupted sensor measurements. We restrict the
sensor attacks to be sparse in nature, i.e., an adversary can
arbitrarily corrupt a subset of sensors in the system.

Prior work related to secure state estimation against sensor
attacks in linear dynamical systems can be broadly categorized
into three classes depending on the noise model for sensor
measurements: 1) noiseless 2) bounded non-stochastic noise,
and 3) Gaussian noise. For the noiseless setting, the work
reported in [1], [2], [3] shows that, under a strong notion
of observability, sensor attacks (modeled as a sparse attack
vector) can always be detected and isolated, and hence the
state of the system can be exactly estimated. In contrast, when
the sensor measurements are affected by noise as well as
maliciously corrupted, the problem of distinguishing between
noise and attack vector arises. Results reported in [5], [6], [7]
are representative of the second class: bounded non-stochastic
noise. They provide sufficient conditions for distinguishing the
sparse attack vector from bounded noise but do not guarantee
the optimality of their estimation algorithm. The work reported
in this paper falls in the third class: Gaussian noise. Prior
work in this class includes [8], [9], [10], [11]. In [8], the
analysis is restricted to detecting a class of sensor attacks
called replay attacks (i.e., attacks in which legitimate sensor
outputs are replaced with outputs from previous time instants).
In [9], the authors focus on the performance degradation of
a scalar Kalman filter (i.e., scalar state and a single sensor)
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when the sensor is under attack. Since they consider a single
sensor setup, attack sparsity across multiple sensors is not
studied, and in addition, they focus on an adversary whose
objective is to degrade the estimation performance and stay
undetected at the same time (thereby restricting the class of
sensor attacks). In [10] and [11], robustification approaches for
state estimation against sparse sensor attacks are proposed, but
they lack optimality guarantees against arbitrary sensor attacks.

In contrast to prior work in the Gaussian noise setup,
we consider a general linear dynamical system and give
(optimal) guarantees on the achievable state estimation error
against arbitrary sensor attacks. The following toy example is
illustrative of the nature of the problem addressed in this paper
and some of the ideas behind our solution.

Example 1: Consider a linear dynamical system with a
scalar state x(¢) such that x(¢# 4+ 1) = x(¢) + w(t), where w(t)
is the process noise following a Gaussian distribution with
zero mean and is instantiated i.i.d. over time. The system has
three sensors (indexed by d) with outputs y,(¢) = x(¢) +v4(¢),
where v,(t) is the sensor noise at sensor d. Similarly to the
process noise, v4(¢) is Gaussian distributed with zero mean
and is instantiated i.i.d. over time. The sensor noise is also
independent across sensors. Now, consider an adversary which
can attack any one of the sensors and arbitrarily change its
output. In the absence of sensor noise, it is trivial to detect
such an attack since the two good sensors (not attacked by the
adversary) will have the same output. Hence, a majority based
rule on the outputs leads to the exact state. However, in the
presence of sensor noise, even the good sensors may not have
the same output and a simple majority based rule cannot be
used for estimation. In this paper, we build on the intuition that
we may still be able to identify sensors whose outputs can lead
to a good state estimate by leveraging the noise statistics over
a large enough time window. In particular, our approach for
this example would be to hypothesize a subset of two sensors
as good, and then check whether the outputs from the two
sensors are consistent with the Kalman state estimate based
on outputs from the same subset of sensors. Furthermore, we
show in this paper that such an approach leads to the optimal
state estimation error for the given adversarial setup.

In this paper, we generalize the Kalman filter based ap-
proach in the above example to a general linear dynamical
system with sensor and process noise. Our main contributions
can be listed as follows:

e We give optimal guarantees on the achievable state

estimation error against arbitrary sensor attacks and
propose an algorithm to achieve the same guarantees;
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e As a result of independent interest, we give a cod-
ing theoretic interpretation (alternate proof) for the
necessary and sufficient conditions for secure state
estimation in the absence of noise [2], [3], [6] (known
as the sparse observability condition).

The remainder of this paper is organized as follows.
Section II deals with the setup. The main results are stated
in Section III. Section IV considers the simpler setting of a
scalar state and illustrates the main ideas behind our estimation
algorithm and Section V considers its generalization to a vector
state. Finally, we discuss the coding theoretic view of the
sparse observability condition [3] in Section VI.

II. SETUP
A. System model

We consider a linear dynamical system with sensor attacks
as shown below:

x(t4+1) =Ax()+w(r), y@)=Cx(t)+v(@)+¢@), (1)

where x(t) € R" denotes the state of the plant at time ¢ € N,
w(r) € R" denotes the process noise at time #, y(r) € RP de-
notes the output of the plant at time ¢ and v(¢) € R” denotes the
sensor noise at time . The process noise w(t) ~ A4 (0, GV%I,,),
i.e., w(t) is Gaussian distributed with zero mean and covari-
ance matrix G&,In, where I, is the identity matrix of dimension
n and o, € R. Similarly, sensor noise v() ~ .4 (0,671,).
Both v(r) and w(z) are instantiated i.i.d. over time, and v(7) is
independent of w(z).

The sensor attack vector @(¢) € R? in (1) is introduced
by a k-adversary defined as follows. A k-adversary has access
to any k out of the p sensors in the system. Specifically, let
kK C{1,2,...p} denote the set of attacked sensors (with |k| =
k). The k-adversary can observe the actual outputs in the k
attacked sensors and change them arbitrarily. Specifically, the
output of an attacked sensor j € k can be expressed as

yi(t) :c]Tx(t)+vj(t)+¢j(t), 2)

where T denotes the matrix transpose operation, ch- is the
jth row of C, v;(r) is the noise at sensor j and ¢;(r) is
the adversarial corruption introduced at sensor j. For j ¢ K,
¢;(r) = 0. The adversary’s choice of k is unknown but is
assumed to be constant over time (static adversary). The
adversary is assumed to have unbounded computational power,
and knows the s%/stem parameters (e.g., A and C) and noise
statistics (e.g., o2 and o). However, the adversary is limited
to have only causal knowledge of the process noise and the
sensor noise in good sensors (not attacked by the adversary).
We discuss this assumption in more detail in Section II-C.

B. State estimation: prediction and filtering

In this paper, we address two state estimation problems:
(1) state prediction and (2) state filtering.

In the state prediction problem, the goal is to estimate
the state at time ¢ based on outputs till time 7 — 1. In the
absence of sensor attacks, using a Kalman filter for predicting
the state in (1) leads to the optimal (MMSE) error covariance
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asymptotically [12]. In particular, the Kalman filter update rule
can be written as:

R(1-+1) = AR() +L(1) (v(1) — CR(1)). 3)

where (¢4 1) is the state estimate at time £+ 1 and L(z) is
the Kalman filter gain. For a Kalman filter in steady state [12],
the steady state gain satisfies L(r) = L. Also, we use Py s to
denote the trace of steady state (prediction) error covariance
matrix [12] obtained by using a Kalman filter on a sensor
subset s C {1,2,...p}.

In contrast to the prediction problem, the goal in the state
filtering problem is to estimate the state at time ¢ based on
outputs till time . In the absence of sensor attacks, a Kalman
filter update rule similar to (3) can be used for the filtering
problem [12], and we use F; s to denote the trace of steady
state (filtering) error covariance matrix obtained by using a
Kalman filter on a sensor subset s (details in [13]).

C. Causal knowledge assumptions

At time ¢, the attack vector @(¢) in (1) depends on the
knowledge of the adversary at time #, and in this context, we
limit the adversary’s knowledge of the process and sensor noise
along the lines of causality. In particular, for the prediction
problem we assume the following for a k-adversary:

(A1) The adversary’s knowledge at time ¢ is statistically
independent of w(t') for ¢’ > 1, i.e., ¢ (r) is statistically

independent of {w(¢')};~;;

(A2) For a good sensor d € {1,2,... p} — K, the adversary’s
knowledge at time ¢ (and hence @(r)) is statistically

independent of {vg(¢')};.

Intuitively, assumptions (Al) and (A2) limit the adversary
to have only causal knowledge of the process noise and the
sensor noise in good sensors (not attacked by the adversary).
Note that, apart from (Al) and (A2), we do not impose
any restrictions on the statistical properties, boundedness and
the time evolution of the corruptions introduced by the k-
adversary. In the filtering problem, we replace assumptions
(A1) and (A2) with (A3) and (A4) as described below:

(A3) The adversary’s knowledge at time ¢ is statistically
independent of w(r') for t' >1t, i.e., §(r) is statistically

independent of {w(t')};>;

(A4) For a good sensor d € {1,2,...p} —k, the adversary’s
knowledge at time ¢ (and hence ¢(¢)) is statistically

independent of {v,(t') };>,.

Clearly, (A3) is a stronger version of (Al), requiring ¢(¢) to
be independent of w(z). Similarly, (A4) is a stronger version
of (A2).

D. Sparse observability condition

For the matrix pair (A, C), the observability matrix O with
observability index u is defined as shown below:

C
CA
0= ) . “

CAL-!



In this context, a linear dynamical system, characterized by the
pair (A,C), is said to be observable if there exists a positive
integer 1 such that O has full column rank. In the absence
of sensor and process noise, the conditions under which state
estimation can be done despite sensor attacks have been
studied in [2], [3], [6]. In particular, a linear dynamical system
as shown in (1) is called 0-sparse observable if for every subset
sC{l,...p} of size 0, the pair (A, Cs) is observable (where Cg
is formed by the rows of C corresponding to sensors indexed
by the elements of s). Also, 0 is the smallest positive integer
to satisfy the above observability property. The condition:

8 < p—2k, 5)

is necessary and sufficient for exact state estimation against a
k-adversary in the absence of process and sensor noise [3]; we
will refer to this condition as the sparse observability condition.
We provide a coding theoretic interpretation for the same in
Section VI.

III. MAIN RESULTS

We first state our achievability result followed by an
impossibility result.

Theorem 1 (Achievability): Consider the linear dynamical
system defined in (1) satisfying the sparse observability con-
dition (5) against a k-adversary. Assuming (Al) and (A2),
and a time window G = {t,¢; +1,...t; + N — 1} for the state
prediction problem, the following bound on the prediction error
is achievable against a k-adversary. For any € > 0 and 6 > 0,
there exists a large enough N such that:

P (11] Z e (r)e(r) < max

(Popes)+€ | >1-38,
teG sc{1,2,...p}, |s|=p—k

(©)

where e(f) = x(¢) — &(¢) is the estimation error for the state
estimate %(z). In olther words, with high probability (w.h.p.),

. T .
the bound h]gljgp N ,ezée (t)e(r) < sC{].2,.%2}1f(\s\=p—k (Poprs) is
achievable. Similarly, for the state filtering problem, assuming
(A3) and (A4) against a k-adversary, the following bound on
the corresponding filtering error e(z) is achievable w.h.p.:

1
limsup — Y e (t)e(r) < max
Ny ,g; (0)elt) sC{1,2,...p}, |s|=p—

k(Fopt,s)- (N
The achievability in Theorem 1 is through our proposed
algorithms, which we discuss in the following sections. The
impossibility result can be stated as follows.

Theorem 2 (Impossibility): Consider the linear dynamical
system defined in (1) and an oracle MMSE estimator that
has knowledge of k, i.e., the set of sensors attacked by a
k-adversary. Then, there exists an attack sequence ¢(¢) such
that the trace of the prediction error covariance of the oracle
estimator is bounded from below as follows:

tr (E (e(t)e’ () = Poprs, )

where e(¢) above is the oracle estimator’s prediction error and
s={1,2,...p} — k. Similarly, for the filtering problem,

tr(E (e(t)e’ (1)) = Foprs.- ©9)
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Proof: Consider the attack scenario where the outputs
from all attacked sensors are equal to zero, i.e., the corruption
0;(t) = —ch.x(t) —v;(t), VJj € k. Hence, the information col-
lected from the attacked sensors cannot enhance the estimation
performance. Accordingly, the estimation performance from
the remaining sensors is the best one can expect to achieve.

Clearly, for the adversary’s best choice of k, the guarantees
given in our achievability match the impossibility bound (in
an empirical average sense), and hence, we consider our guar-
antees optimal. We measure the performance of our proposed
algorithms in terms of empirical average (and not expectation)
since the resultant error in the presence of attacks may not be
ergodic.

IV. SECURE STATE ESTIMATION: SCALAR STATE

In this section, we illustrate the main ideas behind our
general scheme in the simpler setting of estimating a scalar
state variable against a k-adversary. In particular, we focus on
the state prediction problem for the system in (1) when the
state is a scalar and there are p > 2k+ 1 sensors (i.e., 1-sparse
observability condition against k-adversary). For clarifying the
presence of scalar terms in our analysis, we use the scalar
version (regular instead of bold face) of the notation developed
in Section 1, i.e., x(¢) for the plant’s state, £(¢) for the estimate,
and yy(t) = cyx(t) + v4(t) for the output of a good sensor
de{l,2,...p} —x. We first describe our proposed algorithm
for a time window G = {#;,t1+1,...t; + N — 1} of size N, and
then analyze its performance.

Secure scalar state prediction algorithm: Considering a
time window G, Algorithm 1 shows the secure state prediction
algorithm for the case when the state is a scalar. The algorithm
runs a bank of (pf k) Kalman filters in parallel; one Kalman
filter associated with each distinct set of p —k sensors. For
each distinct set s of p —k sensors, the corresponding Kalman
filter fuses all the measurements from these sensors in order
to calculate (prediction) estimate £5(¢). Using the calculated
estimate £5(7), we calculate the individual residues for each
sensor as shown in (10). The algorithm, then, exhaustively
searches for the set s of p —k sensors which satisfy the
residue test shown in (11). If a set s* satisfies the residue test,
it is declared good and the corresponding Kalman estimate
£s+ (1) is used as the state estimate for the given time window.
Intuitively, the residue test checks if the outputs from a given
sensor set s are consistent with the corresponding Kalman
estimate over the time window G.

Performance analysis: Consider the set s of p —k
sensors which are not attacked by the k-adversary. Assuming
that the Kalman filter corresponding to set s is in steady state, it
can be shown that E (rfl(t)) = cﬁPom’s + 02, Vd €5 [12] (Where
residue r4(¢) is as defined in (10)). For large enough N, due to
the (strong) law of large numbers (LLN), the residue test will
be satisfied w.h.p. for at least this set of good sensors. This
ensures that w.h.p., the algorithm will not return an empty set.
Also, the estimate £5(¢) from this set of good sensors trivially
achieves the error bound (6). But, since the algorithm can
return any set of size p —k which satisfies the residue test,
it may be possible that some of the sensors in the returned set
are corrupt. In the remainder of our analysis, we show that for
any set returned by the algorithm, the corresponding Kalman
estimate achieves (6).



Algorithm 1 SECURE STATE PREDICTION - SCALAR CASE

1: Enumerate all sets s € S such that:
S={slsc{1,2,...p}, [s| = p—k}.
2: For each s € S, run a Kalman filter that uses all sensors
indexed by s and returns estimate £5(¢) € R.
3: For each s € S, calculate the residues for all sensors d € s
over a time window G = {r,t; +1,...;y + N — 1} as:

ra(t) = ya(t) —caks(t) Vdes, VteG. (10)

4: Pick the set s* € S which satisfies the following residue
test:

vdes*,  (11)

*Zrd

IGG

< chopt §* +G + &

where € > 0 is a design parameter and can be made
arbitrarily small for large enough N.
5: Return s* and £(¢) := £+(r) Vr€G.

Suppose the algorithm returns a set s of p —k sensors.
There is definitely one good sensor (say sensor d) in this set
because there can be at most k attacked sensors and p —k > k.
Since the residue test is satisfied for this sensor, we have the
following constraint:

*Z FOE Z(CdX(t)+Vd(f)—Cdxs( )?

ZEG ZEG

~ Z (cae(t) +va(t))*

reG

dZez(t +— Z d(t)—!—fZe Wal(t)

teG teG
(b) 5 2
< CdPopt,s + 0, +¢&, (12)

where (a) follows from y,(t) = cyx(t) +v4(¢) for a good sensor
d and (b) follows from the residue test. The error e(¢) above is
the state estimation (prediction) error at time ¢ (in the presence
of a k-adversary) when £5(¢) is used as the state estimate. Using
LLN, we can make an additional simplification as follows. For
any € > 0, there exists a large enough N such that:

“ oLl Ze(t)w (13)
ZEG teG
@ , (b)
< cGPops+ |0y — = Z Vi(t)|+€ < APps+2e,  (14)
tEG

where (a) follows from (12), and (b) follows w.h.p. due to
LLN. Our next step will be to show that the cross term
% Y cge(t)vq(r) in (13) is vanishingly small w.h.p. as N — eo;
this leads to the required bound on 7. ¥, €*(t) using (14). We
do so in two steps: first we show that the mean of the cross
term 2% Y.cce(t)vy(r) is zero and then show that its variance
is vanishingly small as N — oo.

The mean of the cross term %Zte(;e(f)"d(t) can be
computed as shown below:

(2cd Ze vd(t)> @ Wd Z
cG

teG

a(1)) =0, (15)
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where (a) follows from the independence of e(¢) from vy(¢)
(due to assumption (A2), £s(¢) is independent of good sensor
noise v4(t) despite sensor attacks). Also, using (15) and taking
the expectation in (13):

(g

As the final step in our analy31s we will now show that the

variance of cross term N 4y cge(t)vq(t) is vanishingly small
as N — co. For any & > 0, there exists a large enough N such
that:

2
< Y et)vale )
1€G

2¢e
) < Poprst+ —- (16)
Ca

Y. E(e(t)va(t)e(t)va(r))

t,1'eG, 1<t/

_ LB (@0v0) | 2
teG
E (e(t)va(t)e(t')) E (va(t'))
t,'eG,t<t’

N2 N2
a
@ LEE0)E ()
2
v Y
2 2 (b)
_ G—‘E <):reG€ (t)> <e, (17
N N
where (a) follows from the independence of e(¢) from vy(¢)
and the independence of v;(¢') from e(¢)v,(t)e(t') (for ¢’ > 1),
(b) follows from (16). The above result implies that the cross
term 2;,"’ Y.cce(t)vy(t) (with zero mean) has vanishingly small
variance as N — co. As a result, using Chebyshev’s inequality
and (14), we have the error bound (6).

V. SECURE STATE ESTIMATION: VECTOR STATE

In this section, we consider the state estimation problem
(against a k-adversary) for the general linear dynamical system
described in (1), when the state is a vector. We focus on the
prediction problem in this section; see [13] for the filtering
problem. We assume that the system is O-sparse observable
such that it satisfies the sparse observability condition (5)
against a k-adversary. We first introduce some additional
notation required for our proposed algorithm.

Additional notation: Consider a set s of p —k sensors.
Such a set has (” 5/‘) sensor subsets of size 6, and we index
these subsets of s by i. Due to the O-sparse observability
condition, each subset / forms an observable pair (A,C;)
with observability matrix O; and observability index u;; C;
is formed by rows of C corresponding to subset i of s. We
define matrices J; and M, as shown below:

0 0 ... 0
C; 0 ... 0

Ji = CA C; ... 0 M, = o237 +0'v21u,--
CiA/'lﬁ2 C,‘A“"73 .o G

(18)

The pseudo-inverse of O; is denoted by Ol{ The output from
sensor subset i (of size @) at time 7 is denoted by y;(r) € RY.
We consider the state estimation problem for a time window G



Algorithm 2 SECURE STATE PREDICTION - VECTOR CASE

1: Enumerate all sets s € S such that:
S={slsc{1,2,...p}, [s| = p—k}.

2: For each s € S, run a Kalman filter that uses all sensors
indexed by s and returns estimate X(r) € R".

3: For each set s € S, enumerate all subsets of size 6
and index them by i. Let y; be the observability index
associated with sensor subset i. For each subset i of s
(subset of size 0), calculate the block residue:

yi(?)
yi(t+1)
. vVt € G.

l‘,'(t) = 70,‘)250)

yi(t+ui—1)

4: Pick the set s* € S which satisfies the following block
residue test for each subset i of s* (subset of size 0).
Partition G into y; groups Go, Gt,...Gy;—1 of size Np such

that G, = {¢| ((t —t;) mod ;) =1} and check that for each

G[Z

1

— Y (OTr Ol (¢ OTT)

NBtEZGI ll()l()l

< Popes 17 (0/M, 0" 4, (19)
where € > 0 is a design parameter which can be made

arbitrarily small for large enough Np.
5: Return s* and X(¢) := %+ (1) VI €G.

of size N and assume without loss of generality that y; divides
N such that y;Np = N.

Secure state prediction algorithm: Similar to the scalar
setting, Algorithm 2 runs a bank of ( S ,) Kalman filters in par-
allel. For each distinct set s of p —k sensors, the corresponding
Kalman filter fuses all the measurements from these sensors in
order to calculate an estimate %4(7). For a sensor set s of size
p —k to satisfy the block residue test, each of its (p gk) subsets
should satisfy (19) for each group G;. If a set s* satisfies
the residue test, it is declared good and the corresponding
Kalman estimate %¢+(f) is used as the state estimate for the
given time window. Intuitively, the residue test checks if the
outputs from every observable sensor subset of size 6 within
set s are consistent with the corresponding Kalman estimate
over the time window G (see [13] for performance analysis).

VI. SPARSE OBSERVABILITY: CODING THEORETIC VIEW

In this section, we revisit the sparse observability condition
(5) against a k-adversary and give a coding theoretic interpre-
tation for the same. We first describe our interpretation for
a linear system, and then discuss how it can be generalized
for non-linear systems. Consider the linear dynamical system
in (1) without the process and sensor noise. If the system’s
initial state is x(0) € R” and the system is 0-sparse observable,
then clearly in the absence of sensor attacks, by observing
the outputs from any 6 out of p sensors for n time instants
(t=0,1,...n—1) we can exactly recover x(0) and hence,
exactly estimate the state of the plant. A coding theoretic view
of this can be given as follows. Consider the outputs from
sensor d € {1,2,...p} for n time instants as a symbol ); € R".
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Thus, in the (symbol) observation vector YV = [Vi  V2... V)],
any 6 symbols are sufficient to recover the initial state x(0).
Now, let us consider the case of a k-adversary which can arbi-
trarily corrupt any k sensors. In the coding theoretic view, this
corresponds to arbitrarily corrupting any k (out of p) symbols
in the observation vector. Recovery of the initial state despite
such corruptions depends on the (symbol) Hamming distance
between the observation vectors corresponding to two distinct
initial states (say x")(0) and x()(0) with x((0) # x(?(0)).
In the case of O-sparse observability, at most 8 — 1 symbols in
observation vectors corresponding to x(!)(0) and x)(0) can
be identical; if 0 of the symbols are identical, this would imply
x(N(0) = x(®)(0). Hence, the Hamming distance between the
observation vectors corresponding to x(!)(0) and x(2)(0) is at
least p — 6 4+ 1 symbols. This implies that we can correct up
to k < %0“ corruptions (equivalent to 6 < p — 2k), which
is precisely the sparse observability condition required against
a k-adversary (details in [13]). By analogously defining 6-
sparse observability for a (noiseless) non-linear system, the
same interpretation holds for the non-linear case; this leads to
an alternative proof for the necessary and sufficient conditions
for secure state estimation in any noiseless dynamical system.
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