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Abstract—We consider the source-channel separation archi-
tecture for lossy source coding in communication networks. It
is shown that the separation approach is optimal when the
memoryless sources at source nodes are arbitrarily correlated,
each of which is to be reconstructed at possibly multiple
destinations within certain distortions, and the channels in this
network are synchronized, orthogonal and memoryless (i.e., noisy
graphs). The extracted pure network source-coding problem has
to incorporate user interactions and the corresponding causality
constraints, which suggests a distinct research direction into
interactive network source coding that has not received much
attention in the literature. The separation result in this paper is
a companion to results of a similar flavor established recently
in [11] for the case of independent sources over communication
networks with more general multiuser channels.

I. INTRODUCTION

One of the fundamental observations in information theory

is the Shannon’s source-channel separation theorem [10]. The

separation theorem is architecturally important because it

demonstrates that in point-to-point communication systems the

source coding and channel coding components can be designed

separately essentially without loss in overall performance.

Unfortunately, it has been shown that separation does hold in

general multiuser networks. Given the architectural benefits of

separation, it is important to understand network circumstances

where it still retains optimality. In this paper we focus on this

question for the special case of transmitting correlated sources

over a “noisy” graph (a network of orthogonal memoryless

channels). We refer to this as the distributed network source

coding problem.

The difficulty in answering the separation question for the

distributed network source coding problem, lies in the fact that

we do not have explicit characterizations of the rate-distortion

regions or the joint coding achievable distortion regions. Since

the natural comparison between separation and joint coding

is not a fruitful direction, we establish the answer to the

separation question, without specifically solving the individual

or joint coding problem.

In addition to source-channel separation, separation between

network coding and channel coding, has received considerable

attention in recent years [1]–[4]. In general, the approach based

on separating network coding and channel coding is also not

optimal, as shown by an example of deterministic broadcast

channels with no interference [3]. However, a surprising result
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by Koetter, Effros and Medard [4] (see also [5]) essentially

states that for general multicast on orthogonal, synchronized

and memoryless channels (i.e., “noisy” graphs), there is no loss

of optimality by employing such a separation. This result does

not rely on an explicit characterization of the general multicast

network coding capacity region, which is well known to be

equivalent to the extremely difficult problem of characterizing

the entropy space [6].

The distributed network source coding can be thought of

as a generalization of the problem studied by Koetter et al

[4], [5]. The main difference between our work and [4], [5]

is the following: (i) the sources in our setting are correlated

instead of being independent messages; (ii) we allow for lossy

delivery of the sources to the destinations. In this work, we

adapt the technique developed in [4] to our distributed network

source coding setting. The proof, in its simplest form, relies on

a simulation of each orthogonal channel by an appropriately

defined “rate-distortion” code. The example in Section II

illustrates this idea for a simple network.

Though our results demonstrate the effectiveness of source-

channel separation, a large portion of the difficulty in de-

signing efficient codes remains in the extracted pure source

coding problem. In particular, the network induces a pure

source-coding problem with rather complex user interactions.

The importance of such kind of interactive source coding in

networks suggests a distinct and perhaps under-studied line of

research in network source coding.

The distributed network source coding problem includes

the problem of successive refinement source coding with

degraded decoder side informations on orthogonal commu-

nication channels considered in [7], [8], and the problem

of distributed source coding on orthogonal multiple access

channel considered in [9].

The rest of this paper is organized as follows. In Section

II we discuss an example to provide some intuitions for

the solution. Necessary notation and definitions are given in

Section III. The main result and the proof are given in Sections

IV. Section V concludes the paper.

II. AN EXAMPLE

In this section we discuss an example that illustrates the

intuitions of the main result established in and Sections IV.

For simplicity, we do not attempt to keep the notation used

in this section consistent with that given in III, which is more
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Fig. 1. Transmitting correlated sources on orthogonal interference networks.

suitable for complex networks; we also assume the channel

bandwidth and source bandwidth are matched for simplicity.

Consider the example depicted in Figure 1, where the

discrete memoryless sources S0, S1, S2 are correlated, and

each discrete memoryless channel between a transmitter and

a receiver is orthogonal to the other channels. Though the

capacity region of this orthogonal interference channel is not

difficult to establish, the rate-distortion region of the source

coding problem is not known, which is at least as difficult as

the well known lossy distributed source coding problem. Thus

the conventional proof approach of characterizing separately

the rate-distortion region, channel capacity region and the joint

source-channel coding achievable distortion region, and then

making comparison, does not lead to a meaningful result.

Next, we illustrate through this example the methodology that

enables us to prove the optimality of source-channel separation

for the distributed network source coding problem.

Suppose there exists a length-n joint source-channel code

that achieves the distortion quadruple (D0, D1,1, D1,2, D2).
The key observation is the following simple fact. If we fix

this joint source-channel code, then the channel input for

any given channel, for example Xn
1,1, can be viewed as a

super (block) source, independent and identically distributed

across blocks; see Fig. 2. Therefore, we can encode a length-k
sequence of such blocks using a “rate-distortion” code of rate

per block slightly greater than I(Xn
1,1;Y

n
1,1), the codewords

of which are generated using the distribution Y n
1,1. It follows

that with high probability we can find a Y nk
1,1 codeword in the

codebook that is jointly typical with a channel input sequence

Xnk
1,1, (i.e., a length-k vector of the super source samples),

for sufficiently large k. This rate-distortion code essentially

simulates the channel output over k length-n blocks, and

we might as well send this digital rate-distortion codeword

index across this channel using any good channel code, and

perform the original joint source-channel decoding function

on this simulated channel output, which eventually achieves

the (asymptotically) same distortion as the original code. It

is easy to see that since I(Xn
1,1;Y

n
1,1) ≤ nC1,1, where C1,1

is the channel capacity of the channel between transmitter 1
and receiver 1, we expect that the channel should be able to

deliver this rate-distortion codeword index reliably. Replacing

all the channel outputs with such simulated outputs in this

problem results in a new scheme. In this new coding scheme,

the codeword indices of these “rate-distortion” codes are

the only informational interface between the source coding

component and the channel coding component, and this is

a separation-based scheme which asymptotically achieves the

same distortions (D0, D1,2, D1,2, D2) originally achieved by
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Fig. 2. Converting a joint source-channel code into a separation-based code
on an individual orthogonal channel.

the joint coding scheme. In other words, any distortions that

are achievable by joint coding scheme can be achieved by a

separation-based scheme.

The above observation largely reflects the intuition behind

the the optimality proof of source-channel separation for the

general distributed network source coding problem, however,

some technical details (besides the asymptotically diminish-

ing quantities omitted in the above discussion) need to be

addressed: the main difficulty is that when the network has

relays or cycles, the super source argument given above does

not apply directly since we cannot wait for many long blocks

due to causality and channel usage constraints. The proof

given Section IV will resolve this difficulty through an intricate

arrangement of the channel simulation.

III. NOTATION AND DEFINITIONS

The network with a total of N nodes can be conve-

niently written as a directed graph G = (V, E), where

V = {1, 2, . . . , N} , IN is the set of nodes, and E is the

set of edges between nodes. Each edge e = (i, j) ∈ E is

associated with a discrete memoryless channel, whose transi-

tion probability is given as P (Yi,j |Xi,j) with input alphabet

Xi,j and output alphabet Yi,j ; these channels are assumed

to be synchronized. Each node i has a discrete memoryless

source Si, distributed in the alphabet Si, and the collection of

the sources are distributed according to the joint distribution

P (S1, S2, . . . , SM ) at each time instance. For simplicity, we

are inherently assuming these sources are synchronized (and

thus the notation P (S1, S2, . . . , SM ) is meaningful), though

this requirement can be relaxed to some extent at the expense

of more complex notation. A length-n vector of a source Si

is written as Sn
i ; we use upper case for random variables, and

lower case for their realizations.

For each source, a distortion measure is defined in a

general manner as d : Si × Ŝi → [0,∞) where Ŝi is the

reconstruction alphabet; for source vectors, the distortion is

generalized to be the average of the single letter form in

the usual way. Different distortion measures can in fact be

used for multiple reconstructions of the same source, or even

distortions defined on functions of several sources, without

any essential difference, however for notational simplicity we

do not consider such cases.

A node j may be interested in only a subset of the sources

{Si, i ∈ IN}; notationally, we may write the set of sources

that the node j is interested in as Tj . Next we define the class

of codes being considered for the distributed network source

coding problem, which are conventional block codes.



Definition 1: An (m,n, {dj,k, k ∈ Tj}) distributed net-

work source code consists the following components:

• At each transmitter node j, for each k such that (j, k) ∈
E , an encoding function for time instance t

φ
(t)
j,k : Sm

j ×
∏

(i,j)∈E

Yt−1
i,j → Xj,k, t = 1, 2, . . . , n. (1)

• At each receiver node j, for each source k ∈ Tj , a

decoding function

ψj,k :
∏

(i,j)∈E

Yn
i,j × Sm

j → Ŝm
k . (2)

The encoding and decoding functions induce the distortions

dk,j =
1

m

m∑

t=1

d(Sk(t), Ŝk,j(t)),

j = 1, 2, . . . ,M, and k ∈ Tj ,

where Ŝk,j is the reconstruction of source Sk at node j.
Note that if a node is not interested in a certain source,

we may simply assume the distortion of the reconstruction at

this node to be large. Thus we can write a distortion matrix

without loss of generality, whose element dk,j is the distortion

associated with the reconstruction of source Sk at node j.
Clearly, without loss of generality, we can let the element

di,i = 0 and simply define di,j = dmax
i for i /∈ Tj , where

dmax
i is the distortion achievable at rate zero for source Si.

With this in mind, we next define the region of achievable

distortion matrix.

Definition 2: A distortion matrix ~D is achievable for dis-

tributed network source coding with bandwidth mismatch

factor κ, if for any ǫ > 0 and sufficiently large m, there

exist an integer n ≤ κm and an (m,n, {dj,k, k ∈ Tj})
distributed network source code, such that di,j ≤ Di,j + ǫ,
i, j = 1, 2, . . . , N . The collection of all such distortion

matrices is the distributed network source coding achievable

distortion region, denoted as Ddis.

At this point, it is important to clarify the individual source

code and channel code used in the separation-based approach.

To this end, we essentially need to define the pure source

coding problem and channel coding problem. The channel

coding problem in the distributed network source coding

problem is simply the point-to-point channel capacity problem,

and the codes used are naturally block channel codes. The

source coding problem is more complex: intuitively speaking,

it is the original problem when the noisy channels are replaced

by noise-free bit-pipes. However, the block source codes

we use on this network need to incorporate the interactive

communication aspect carefully. We next formally define such

codes.

Definition 3: An (m, l, {Mi,j , (i, j) ∈ E}, {dj,k, k ∈ Tj})
distributed network source digital code consists the following

components:

• At each transmitter node j, for each k such that (j, k) ∈
E , an encoding function for transmission session r

φ̃
(r)
j,k : Sm

j ×
∏

(i,j)∈E

Ir−1
Mi,j

→ IMj,k
, r = 1, 2, . . . , l. (3)

• At each receiver node j, for each source k ∈ Tj , a

decoding function

ψ̃j,k :
∏

(i,j)∈E

Il
Mi,j

× Sm
j → Ŝm

k . (4)

The encoding and decoding functions induce the distortions

dk,j =
1

m

m∑

t=1

d(Sk(t), Ŝk,j(t)),

j = 1, 2, . . . ,M, and k ∈ Tj ,

where again Ŝk,j is the reconstruction of source Sk at node j.
In the above definition, Mi,j is essentially the cardinality

of the noise-free bit-pipe on edge e = (i, j) per m source

symbols. In this code, there are a total of l sessions of coding,

and in each session the encoding functions need to observe the

causality constraints on the communication session level. This

kind of lossy source coding problems, though not often seen in

the information theory literature, has in fact been considered

for simple settings: Kaspi in 1985 considered the two-way

source coding problem [12], which is defined in a very similar

manner for a two-terminal setting.

Definition 4: A rate-distortion-matrix tuple ({Ri,j , (i, j) ∈

E}, ~D) is achievable on a given source communication net-

work, if for any ǫ > 0, there exists an integer l, such that for

any sufficiently large m, there exists an (m, l, {Mi,j , (i, j) ∈
E}, {dj,k, k ∈ Tj}) code such that

Ri,j + ǫ ≥
l

m
logMi,j , (i, j) ∈ E

dj,k ≤ Dj,k + ǫ, k ∈ Tj . (5)

The collection of distortion matrix ~D for which the rate-

distortion-matrix tuple ({Ri,j , (i, j) ∈ E}, ~D) is achievable

for a given rate vector {Ri,j , (i, j) ∈ E} is denoted1 as

Ddis({Ri,j , (i, j) ∈ E}).
With the above definition, it is clear that we can combine

the digital source codes together with the capacity-achieving

channel codes for each channel on the original communica-

tion network. More precisely, we can define the achievable

distortion region using such a separation approach as

D∗
dis = Ddis({Ri,j = κCi,j , (i, j) ∈ E}). (6)

IV. OPTIMALITY OF SEPARATION FOR DISTRIBUTED

NETWORK SOURCE CODING

Our main result is the following theorem.

Theorem 1: For any distributed network source coding

problem (with orthogonal communication channels), we have

Ddis = D∗
dis.

The condition on the synchronization of the channels in

the network can be relaxed to some extent. Particularly, in a

communication network without any relay or feedback, i.e.,

on an interference channel without feedback, the orthogonal

channels can have completely different bandwidth mismatch

factors with the sources (thus asynchronized), and the source-

channel separation architecture is still optimal.

1We have already used Ddis to denote the achievable distortion region for
the joint coding problem, and here we slightly abuse the notation by using
Ddis({Ri,j , (i, j) ∈ E}) to denote the distortion-rate function in this pure
source coding problem. This does not cause any confusion since the concept
of rates does not naturally exist in the joint coding problem.



Proof: The forward part of the proof, i.e., Ddis ⊇ D∗
dis is

straightforward, and we omit it here due to space constraint.

Next we focus on the direction Ddis ⊆ D∗
dis. Con-

sider an arbitrary joint source-channel coding scheme with

n ≤ κm channel uses, which achieves distortion matrix
~D. It is instructive to first examine the joint distribution

induced by this particular coding scheme. Let XE(t) and

YE(t) denote the collection of channel inputs and outputs

at time t; similarly we use Sm
V

to denote the collection of

all the source vectors in the network. At t = 1, XE(1) is

a function of Sm
V

, i.e., XE(1) = φ
(1)
E

(Sm
V
) in the notation

of (1); XE(1) generates YE(1) via |E| orthogonal channels;

note that we have Sm
V

− XE(1) − YE(1) form a Markov

chain and P (YE(1)|XE(1)) =
∏

e P (Ye(1)|Xe(1)) since the

channels are orthogonal. At t = 2, XE(2) is a function of

Sm
V

and YE(1), i.e., XE(2) = φ
(2)
E

(Sm
V
, YE(1)); XE(2) further

generates YE(2) via |E| orthogonal channels. Successively, at

time t, we have

• Condition one: XE(t) = φ
(t)
E
(Sm

V
, Y t−1

E
);

• Condition two: (Sm
V
, Xt−1

E
, Y t−1

E
) − XE(t) − YE(t)

form a Markov chain, and P (YE(t)|XE(t)) =∏
e P (Ye(t)|Xe(t)).

The basic idea following the example given in Section II

is to simulate the channel output by a deterministic func-

tion of channel input, then send the output index of this

function digitally through the channel via a channel code;

this function should be constructed in such a way that the

joint typicality is preserved. That is to say, in the evolution

of the probability distribution induced by this deterministic

substitution, condition one does not change while condition

two is accurately simulated using a deterministic function.

In order to accomplish this efficiently, the substitution has to

be done over a long block. This however cannot be directly

implemented because in a general network we cannot let the

nodes wait for a long block while the channels idle2. To

circumvent this difficulty, we use a technique adapted from

[4]. The extracted pure source coding problem defined in

Definition 3 and Definition 4 is rather crucial in the discussion

below, and the readers are encouraged to familiarize with them

before proceeding.

We next show that if a distortion matrix ~D is achievable

in the joint coding problem defined in Definition 1 and

Definition 2, which we denote as j , then the rate distortion

matrix pair ({κCe}, ~D) is also achievable in the pure source

coding problem defined in Definition 3 and Definition 4,

which we denote as s. For this purpose, we shall construct

an n-session digital distributed network source code for s

that operates on a source sequence of length mn′ for some

sufficiently large n′, based on the original length-n joint

source-channel code for j , and upper-bound the rates used in

the digital codes. We first partition the source sequence Smn′

i ,

i = 1, 2, . . . , N , into n′ disjoint block components, each of

2This is in fact not an issue in the example given in Section II where no
relay and feedback are present. In that setting, all the information is available
before encoding starts, and thus the causality issue is significantly simplified.

length m. We shall write the l-th component of Smn′

i , i.e.,

Si((l − 1)m+ 1), Si((l − 1)m+ 2), . . . , Si(lm), as Sm
i 〈l〉.

For each e ∈ E and each session t ∈ In =
{1, . . . , n}, we generate a source codebook Ce,t of size

exp(n′(I(Xe(t);Ye(t)) + ǫ′)) using PYe(t). This codebook is

revealed to both the encoder and decoder on edge e in the

problem s.

Now consider encoding for session 1 at any given edge

e = (i, j) ∈ E . We first apply the original joint source

channel encoding function φ
(1)
e on each block component

smi 〈l〉, l = 1, 2, . . . , n′ and concatenate the outputs to produce

a length-n′ vector xn
′

e (1). Note that after this is done at each

node, smn′

V
and xn

′

E
(1) are strongly jointly typical with respect

to PSm
V

XE(1) with high probability. Then for each e ∈ E ,

given a typical xn
′

e (1), with high probability, we can find

a yn
′

e (1) codeword in Ce,1 such that xn
′

e (1) and yn
′

e (1) are

strongly jointly typical with respect to PXe(1)Ye(1); moreover,

by the Markov lemma, yn
′

e (1) is strongly jointly typical with

smn′

V
and xn

′

E
(1) (with respect to PSm

V
XE(1)YE(1)) with high

probability.

In the problem s, the index of the codeword yn
′

e (1) is

then delivered to the node j without error for each edge e ∈ E
before the second session starts. The second session encoding

starts for any given edge e = (i, j) ∈ E by applying the

original joint source-channel encoding function φ
(2)
e on the

following variables, for each l, respectively:

• The l-th component of smn′

i , i.e., smi 〈l〉;
• The l-th component of yn

′

e′ (1) for all e′ = (k, i) ∈ E ,

which is denoted as ye′(1, 〈l〉).

The outputs are concatenated, resulting in a length-n′ vector

xn
′

e (2); see Figure 3. At this point, we can again find a yn
′

e (2)
codeword in Ce,2 such that xn

′

e (2) and yn
′

e (2) are strongly

jointly typical with respect to PXe(1)Ye(1), with high probabil-

ity. An induction shows that by applying the above procedure,

with high probability, the overall encoding procedure results

in smn′

V
xnn

′

V
ynn

′

V
strongly jointly typical with respective to the

original distribution PSm
V

Xn
V
Y n
V

; since n is finite in the original

code, for sufficiently large n′, the error in the jointly typicality

definition is upper-bounded.

After the above n sessions of encoding, at node v = j ∈ V ,

we apply the originally joint source-channel decoding function

ψj,k to reconstruct the l-th block component of source smn′

k ,

i.e., sk 〈l〉, for k ∈ Tj using the following variables:

• The l-th component of smn′

j , i.e, smj 〈l〉;
• ye′(t, 〈l〉) for all e′ = (i, j) ∈ E and all t = 1, 2, . . . , n.

Denote the output of this function as ŝmk,j 〈l〉. It follows that

the vector pair sequence (smk 〈l〉 , ŝmk,j 〈l〉), l = 1, 2, . . . , n′,
is strongly jointly typical with respective to the distribution

P
SmŜm

k,j
, with high probability. This fact alone is sufficient

to guarantee the average distortion over all the components is

asymptotically close to Dk,j . Thus it is clear that this scheme

achieves a distortion matrix ~D+ ǫ, where ǫ > 0 can be made

arbitrarily small as n′ → ∞.

It remains to analyze the rates of this digital scheme, i.e.,

the cardinalities of indices delivered during each session for
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Fig. 3. Digital coding operations in session t+ 1 for a node i with an incoming link e′ and an outgoing link e.

the problem s. It is clear that for each link e = (i, j) ∈ E ,

for each session t, we have

I(Xe(t);Ye(t)) ≤ Ce, t = 1, 2, . . . , n, (7)

where Ce is the capacity of the channel on edge e, due to the

conventional channel coding theorem. Thus it is seen that the

cardinality of above digital codes for each session associated

with any given link e is bounded as

exp(n′(I(Xe(t);Ye(t)) + ǫ′)) ≤ exp(n′(Ce + ǫ′)),

t = 1, 2, . . . , n. (8)

It follows that the following rate is achievable in problem s

Re =
n

mn′
log exp(n′(Ce + ǫ′)) = κ(Ce + ǫ′), (9)

according to Definition 4. Thus we have shown that the

rate-distortion-matrix tuple ({Re = κ(Ce + ǫ′)}, ~D + ǫ) is

achievable for the problem s, where ǫ′ and ǫ can be made

arbitrarily small. Since the achievable rate-distortion-matrix

region for s is a closed set, we can safely ignore the

asymptotically small terms ǫ′ and ǫ, and thus complete the

proof for Ddis ⊆ D∗
dis by applying (6).

V. CONCLUDING REMARKS

In a companion paper [11], we showed the optimality of sep-

aration for lossy coding of memoryless sources in a network

with general multiuser communication channels, when the

sources are mutually independent, and each source is needed

only at one destination (or at multiple destinations at the same

distortion level). For the same setting but each source is needed

at multiple destinations under a restricted class of distortion

measures, we also showed that the separation approach is

approximately optimal, in the sense that the loss from optimum

can be upper-bounded [11]. These results, together with the

result in this paper, provide strong theoretical justification for

using the separation approach in these scenarios. Our results

are given in terms of rate-distortion tradeoff, however, they

clearly also hold for lossless coding.

The results in this paper3 and in [11] are obtained without

3After the completion of this work and [11], we became aware of the work
in [13], which has independently arrived at the same result as presented in
this paper.

explicit characterizations of the underlying regions. Such an

approach of identifying properties without explicit individual

component solutions is a valuable tool which may lead to

further insights into network information theory problems. The

source coding problem extracted from the distributed network

source coding scenario implies that the interactive coding

aspect needs to be carefully incorporated into this source

coding problem, which suggests a distinct line of research

direction into network source coding.
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