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Abstract

In this paper, we study the 2-user Gaussian interference-channel with feedback and fading links.

We first show that for a class of fading models when no channel state information at transmitter (CSIT)

is available, the rate-splitting schemes for static interference channel, when extended to the fading

case, yield an approximate capacity region characterized to within a constant gap. We also show a

constant-gap capacity result for the case without feedback. As rate-splitting requires superposition coding

techniques, we next explore simpler schemes for the interference channel (with feedback) that do not

use superposition, rate-splitting or joint-decoding. We demonstrate that point-to-point codes designed

for inter-symbol-interference channels, along with time-sharing can be used to approximately achieve

the entire rate region of the fading interference channel with symmetric fading statistics and feedback.

We also characterize the gaps associated with some common fading models.

I. INTRODUCTION

The 2-user Gaussian interference channel (IC) is a simple model that captures the effect

of interference in wireless networks. Significant progress has been made in the last decade in

understanding the capacity of the static Gaussian IC. But in practice the links in the channel

could be varying rather than static. In this paper, we study the 2-user Gaussian IC with fading

links.

Previous works have characterized the capacity region to within a constant gap for the static

Gaussian IC with and without feedback. The capacity of the 2-user Gaussian IC without feedback

was characterized to within 1 bit in [3]. In [10], Suh et al. characterized the capacity of the

Gaussian IC with feedback to within 2 bits. These results were based on the Han-Kobayashi

Shorter versions of this work appeared in [9], [8] with outline of proofs. This version has complete proofs. This work was

supported in part by NSF grants 1514531 and 1314937.
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scheme, where the transmitters split their messages into common and private parts and uses joint

decoding at receivers.

The problem of characterizing capacity region for the case of the continuously fading channel

with no channel state information at transmitter (CSIT) has not received much attention. The

general Han-Kobayashi scheme for IC [2] can be applied, but it is complex to analyze due to

the time-sharing involved. In [13], Wang et al. considered the bursty IC where the interference

is either present or not present. In [12] Vahid et al. studied the binary fading model for the two-

user IC, where the channel gains, the transmit signals and the received signals are in the binary

field. In [5] Gou et al. proposed an interference neutralization scheme and showed a 2 degrees

of freedom result for 2 × 2 × 2 fading IC with full channel state information at the relays and

destinations. In [6], Kang et al. considered interference alignment for the fading K-user IC with

delayed feedback and showed a result of 2K
K+2

degrees of freedom. Tuninetti [11] studied power

allocation policies for fading Gaussian IC with CSIT and numerically showed that for Rayleigh

fading, their scheme is close to optimal for some system parameters. In [4] Farsani showed that

for fading Gaussian IC if each transmitter has knowledge of the instantaneous interference to

noise ratio (inr) to the non-corresponding1receiver, the capacity region can be achieved within

one bit.

In this paper, we first show that the Han-Kobayashi type rate-splitting schemes [2], [3],

[10] can be extended to a class of fading models that satisfy a condition on the distribu-

tion of crosslink strengths. The condition effectively requires that a ’Jensens Gap’ given by

log (E [inr]) − E [log (inr)] is uniformly bounded for the fading model. In particular, we will

show that common fading models, including Rayleigh and Nakagami fading, satisfy the required

condition. For such fading models we show that rate-splitting based on 1
inr

for the static case

in [3], [10] can be extended to schemes with rate-splitting based on 1
E[inr] for the fading case

to approximately obtain the whole capacity region. Our schemes use fixed power allocation to

achieve any rate point, and for the feedback case (other than choosing the common and private

message rates) we need to vary only a single power allocation parameter to achieve the whole

inner bound, inheriting these properties from [3], [10].

For the feedback IC with symmetric fading statistics, we then devise a strategy that does not

make use of rate splitting, superposition coding or joint decoding . Our scheme only uses point-

1For Tx1 the non-corresponding receiver is Rx2 and similarly for Tx2 the non-corresponding receiver is Rx1



3

to-point codes, and a feedback scheme based on amplify-and-forward relaying, similar to the

one proposed in [10]. Through amplify-and-forward relaying of the feedback signal, the scheme

effectively induces a 2-tap inter-symbol-interference (ISI) channel for one of the users and a

point-to-point feedback channel for the other user. The work in [10] had similarly shown that

an amplify-and-forward based feedback scheme can achieve the symmetric rate point, without

using rate splitting. Our scheme can be considered as an extension to this scheme, which enables

us to approximately achieve the entire capacity region of the symmetric IC with feedback.

In summary our main contributions are:

• Constant gap characterization of the capacity region for a large class of fading IC. In

order to demonstrate this, we develop a Jensen’s Gap characterization of fading models for

approximate optimality with rate splitting schemes.

• Point-to-point codes for approximately achieving capacity region for IC with symmetric

fading statistics and feedback.

The paper is organized as follows. In section II we describe the system setup and the notations.

In section III we outline the main results on the approximate capacity region of fading ICs

and our new scheme for symmetric fading IC which can be implemented using point to point

codes. In section IV we provide the analysis for the approximate capacity results of fading ICs.

In section V we provide the analysis for our new scheme for symmetric fading IC. In section

VI we show that common fading models including Rayleigh and Nakagami fading satisfy the

condition required for the approximate optimality of our schemes.

II. MODEL AND NOTATION

We consider the two-user Gaussian fading IC

Y1(t) = g11(t)X1(t) + g21(t)X2(t) + Z1(t)

Y2(t) = g12(t)X1(t) + g22(t)X2(t) + Z2(t)

where Yi(t) is the channel output of receiver i (Rxi) at time t, where Xi(t) is the input of

transmitter i (Txi) at time t, Zi(t) ∼ CN (0, 1) is complex AWGN noise process at Rxi, and

gij(t) is the time-variant random channel gain, i.i.d. across time, for (i, j) ∈ {1, 2}2. The channel

gain processes {gij(t)} are independent across links (i, j). At time t, the transmitters are assumed

to have no knowledge of the channel gain realizations {gij(τ)}τ≥t, (i, j) ∈ {1, 2}2, i.e., no future

or present channel state is known at the transmitters, but Txi knows the past realizations of its
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direct link {gii(τ)}τ<t. We assume |gij(t)|2 is distributed according to Pij , (i, j) ∈ {1, 2}2, and

P := {Pij}(i,j)∈{1,2}2 . We assume average power constraint 1
n

∑n
t=1 |Xi(t)|2 ≤ 1, i = 1, 2, at the

transmitters, and assume Txi has a message Wi ∈
[
2NRi

]
, for a block length of N , intended for

Rxi for i = 1, 2, and W1 and W2 are independent. We denote SNRi := E
[
|gii|2

]
for i = 1, 2,

and INRi := E
[
|gij|2

]
for i 6= j. For the instantaneous interference channel gains we use

inri := |gij|2, i 6= j.

Under the feedback model, after each reception, each receiver reliably feeds back the received

symbol and the channel states to its corresponding transmitter, i.e., Txi receives the corresponding

channel outputs from Rxi up to time t − 1 at time t, Y t−1
i , and thus Xi(t) is allowed to be a

function of
(
Wi, Y

t−1
i

)
.

We define symmetric fading IC to be a fading IC such that Pd := P11 = P22 and Pc := P12 =

P21. We then denote SNR := E
[
|gd|2

]
, and INR := E

[
|gc|2

]
, assuming gd ∼ Pd and gc ∼ Pc,

for the symmetric case.

We use the vector notation g
1

= [g11, g21], g2 = [g22, g12] and g = [g11, g21, g22, g12]. For

schemes involving multiple blocks (phases) we use the notation X
(i)N
k , where k is the user

index, i is the block (phase) index and N is the number of symbols per block. The notation

X
(i)
k (j) indicates the j th symbol in the ith block (phase) of kth user. For a complex number z, we

use Re (z) to indicate its real part. The natural logarithm is denoted by ln () and the logarithm

with base 2 is denoted by log (). Also we define log+(·) := max (log(·), 0).

III. MAIN RESULTS

We first show that a simple extension of the existing rate-splitting-based schemes for the

Gaussian IC is approximately optimal for the fading case, under a wide class of channel

distributions. Then we proceed to develop a scheme based on point-to-point codes for the

symmetric fading Gaussian IC.

A. Rate splitting for Gaussian fading ICs

Our main results on the rate splitting schemes pertain to a class of channel distributions that

satisfy a certain regularity condition. In particular, the class of distributions under which we can

give an approximate optimality guarantee with rate splitting have uniformly bounded Jensen’s

gap in log-magnitude. The following condition makes this precise.



5

Condition 1. Given P := {Pij}(i,j)∈{1,2}2 , there exists c > 0 such that for all a ≥ 0 and all

P ∈ P ,

log (a+ E [W ])− E [log (a+W )] ≤ c,

where W is distributed according to P .

In section VI we show that common fading models including Rayleigh and Nakagami fading

satisfy this condition. We also show that the bursty interference model of [13] does not satisfy

this condition, due to the existence of a point mass of at zero.

The following two theorems summarize our results on rate splitting for Gaussian fading ICs.

The schemes for both cases are based on Han-Kobayashi-type rate splitting schemes, with the

power allocation performed based on expected interference strength, instead of the instantaneous

one. The schemes will be described in more detail later in this section.

For both cases we obtain capacity gaps in terms of the constant c from Condition 1, with the

following definition.

Definition 2. A rate regionR achieves a capacity gap of δ if for any (R1, R2) ∈ C, (R1 − δ, R2 − δ) ∈

R, where C is the capacity region of the channel.

Theorem 3. For a feedback Gaussian fading IC with the set of channel state distributions P

satisfying Condition 1, the rate region RFB described by (1)−(6) is achievable for 0 ≤ |ρ|2 ≤ 1,

0 ≤ θ < 2π with λpk = min
(

1
INRk

, 1− |ρ|2
)

:

R1 ≤ E
[
log
(
|g11|2 + |g21|2 + 2 |ρ|2 Re

(
eiθg11g

∗
21

)
+ 1
)]
− 1 (1)

R1 ≤ E
[
log
(
1 +

(
1− |ρ|2

)
|g12|2

)]
+ E

[
log
(
1 + λp1 |g11|2 + λp2 |g21|2

)]
− 2 (2)

R2 ≤ E
[
log
(
|g22|2 + |g12|2 + 2 |ρ|2 Re

(
g∗22g12e

iθ
)

+ 1
)]
− 1 (3)

R2 ≤ E
[
log
(
1 +

(
1− |ρ|2

)
|g21|2

)]
+ E

[
log
(
1 + λp2 |g22|2 + λp1 |g12|2

)]
− 2 (4)

R1 +R2 ≤ E
[
log
(
|g22|2 + |g12|2 + 2 |ρ|2 Re

(
g∗22g12e

iθ
)

+ 1
)]

+ E
[
log
(
1 + λp1 |g11|2 + λp2 |g21|2

)]
− 2 (5)

R1 +R2 ≤ E
[
log
(
|g11|2 + |g21|2 + 2 |ρ|2 Re

(
eiθg11g

∗
21

)
+ 1
)]

+ E
[
log
(
1 + λp2 |g22|2 + λp1 |g12|2

)]
− 2 (6)

and the region RFB has a capacity gap of at most c+ 2 bits.



6

Proof: See subsection IV-A

Theorem 4. For a non-feedback Gaussian fading IC with the set of channel state distributions

P satisfying Condition 1, the rate region RNFB described by (7) − (13) is achievable with

λpk = min
(

1
INRk

, 1
)

:

R1 ≤ E
[
log
(
1 + |g11|2 + λp2 |g21|2

)]
− 1 (7)

R2 ≤ E
[
log
(
1 + |g22|2 + λp1 |g12|2

)]
− 1 (8)

R1 +R2 ≤ E
[
log
(
1 + |g22|2 + |g12|2

)]
+ E

[
log
(
1 + λp1 |g11|2 + λp2 |g21|2

)]
− 2 (9)

R1 +R2 ≤ E
[
log
(
1 + |g11|2 + |g21|2

)]
+ E

[
log
(
1 + λp2 |g22|2 + λp1 |g12|2

)]
− 2 (10)

R1 +R2 ≤ E
[
log
(
1 + λp1 |g11|2 + |g21|2

)]
+ E

[
log
(
1 + λp2 |g22|2 + |g12|2

)]
− 2 (11)

2R1 +R2 ≤ E
[
log
(
1 + |g11|2 + |g21|2

)]
+ E

[
log
(
1 + λp2 |g22|2 + |g12|2

)]
+ E

[
log
(
1 + λp1 |g11|2 + λp2 |g21|2

)]
− 3 (12)

R1 + 2R2 ≤ E
[
log
(
1 + |g22|2 + |g12|2

)]
+ E

[
log
(
1 + λp1 |g11|2 + |g21|2

)]
+ E

[
log
(
1 + λp2 |g22|2 + λp1 |g12|2

)]
− 3 (13)

and the region RNFB has a capacity gap of at most c+ 1 bits.

Proof: See subsection IV-B

It is useful to view Theorems 3 and 4 in the context of the existing results for the corresponding

static ICs. It is known that for Gaussian ICs with and without feedback, one can approximately

achieve the capacity region by performing superposition coding and allocating a power to the

private symbols that is inversely proportional to the strength of the interference caused at the

unintended receiver. Consequently, the received interference power is at the noise level, and the

private symbols can be safely treated as noise, incurring only a constant rate penalty. At first

sight, such a strategy seems impossible for the fading IC, where the transmitters do not have

instantaneous channel information. What Theorems 3 and 4 reveal is that if the channel gain

distributions satisfy Condition 1, it is sufficient to perform power allocation based on the inverse

of average interference strength to approximately achieve the capacity region.

We compare the symmetric rate point achievable for the non-feedback symmetric Gaussian

Fading IC in Figure 1. The SNR is varied after fixing log(INR)
log(SNR)

= .5. The simulation yields a
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Figure 1. Comparison of outer and inner bounds with fixed log(INR)
log(SNR)

= .5 for non-feedback symmetric Gaussian Fading IC

at the symmetric rate point. The capacity gap is approximately 1.48 for high SNR from the numerics. Our theoretical analysis

yields gap as 1.83 bits.

capacity gap of 1.48 bits compared to a capacity gap of c+ 1 = 1.83 bits which arises from our

analysis for Gaussian Fading IC from Table VI-B in Section VI.

B. Description of the scheme with point-to-point codes

Although the rate splitting strategy of the previous section approximately achieves capacity

for a wide class of channel distributions, it requires complex processing both at the transmitters

and receivers, since it involves superposition coding at transmitters and joint decoding at the

receivers. In the following subsection, we propose a strategy that does not make use of rate

splitting, superposition coding or joint decoding for the feedback case, which achieves the entire

capacity region for 2-user symmetric fading Gaussian interference channels to within a constant

gap. Our scheme only uses point-to-point codes, and a feedback scheme based on amplify-and-

forward relaying, similar to the one proposed in [10].
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The main idea behind the scheme is to have one of the transmitters initially send a very

densely modulated block of data, and then refine this information using feedback and amplify-

and-forward relaying for the following blocks, in a fashion similar to the Schalkwijk-Kailath

scheme [7], while treating the interference as noise. Such refinement effectively induces a 2-tap

point-to-point inter-symbol-interference (ISI) channel at the unintended receiver, and a point-to-

point feedback channel for the intended receiver. As a result, both receivers can decode their

intended information using only point-to-point codes.

Consider the symmetric fading interference channel, where the channel statistics are symmetric

and independent, i.e., gii(t) ∼ gd, gij(t) ∼ gc, for i 6= j. We consider n transmission phases,

each phase having a block length of N . Generate 2nNR1 codewords
(
X

(1)N
1 , . . . , X

(n)N
1

)
i.i.d ac-

cording to CN (0, 1). Tx1 encodes its message W1 ∈
{

1, . . . , 2nNR1
}

onto
(
X

(1)N
1 , . . . , X

(n)N
1

)
. For Tx2, generate 2nNR2 codewords XN

2 and let it encode its message W2 ∈
{

1, . . . , 2nNR2
}

onto X(1)N
2 = XN

2 . Note that for Tx2, the coding block length for Tx2 is N , whereas it is nN

for Tx1.

Tx1 sends X(i)N
1 in phase i. Tx2 sends X(1)N

2 = XN
2 in phase 1. At the beginning of phase

i > 1, Tx2 receives

Y
(i−1)N
2 = g

(i−1)N
22 X

(i−1)N
2 + g

(i−1)N
12 X

(i−1)N
1 + Z

(i−1)N
2

from feedback. It can remove g(i−1)Nd X
(i−1)N
2 from Y

(i−1)N
2 to obtain g(i−1)Nc X

(i−1)N
1 +Z

(i−1)N
2 .

Tx2 then transmits the resulting interference-plus-noise after power scaling

X
(i)N
2 =

g
(i−1)N
12 X

(i−1)N
1 + Z

(i−1)N
2√

1 + INR
.

In phase i > 1 Rx2 receives

Y
(i)N
2 = g

(i)N
22

(
g
(i−1)N
12 X

(i−1)N
1 + Z

(i−1)N
2√

1 + INR

)
+ g

(i)N
12 X

(i)N
1 + Z

(i)N
2

and feeds it back to Tx2 for phase i+1. The transmission scheme is summarized in Table III-B.

Note that for phase i > 1 Tx1 observes a block ISI channel since it receives

Y
(i)N
1 = g

(i)N
11 X

(i)N
1 + g

(i)N
21

(
g
(i−1)N
12 X

(i−1)N
1 + Z

(i−1)N
2√

1 + INR

)
+ Z

(i)N
1 (14)

= g
(i)N
11 X

(i)N
1 +

(
g
(i)N
21 g

(i−1)N
12√

1 + INR

)
X

(i−1)N
1 + Z̃

(i)N
1 (15)

where Z̃(i)N
1 = Z

(i)N
1 +

g
(i)N
21 Z

(i−1)N
2√

1+INR
.
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Table I

TRANSMITTED SYMBOLS IN n-PHASE SCHEME FOR SYMMETRIC GAUSSIAN IC WITH FEEDBACK

User Phase 1 Phase 2 . . Phase n

1 X
(1)N
1 X

(2)N
1 . . X

(n)N
1

2 X
(1)N
2

g
(1)N
12 X

(1)N
1 +Z

(1)N
2√

1+INR
. . g

(n−1)N
12 X

(n−1)N
1 +Z

(n−1)N
2√

1+INR

At the end of n blocks, Rx1 collects Y1
N =

(
Y

(1)N
1 , . . . , Y

(n)N
1

)
and decodes by finding

W1 such that
(
X1

N (W1) ,Y1
N
)

is jointly typical, where X1
N =

(
X

(1)N
1 , . . . , X

(n)N
1

)
. At Rx2,

channel outputs over n phases can be combined with appropriate scaling so that the interference-

plus-noise at phases {1, . . . , n − 1} are successively canceled, i.e., an effective point-to-point

channel can be generated through Ỹ N
2 =

∑n
i=1

(∏n
j=i+1

−g(j)N22√
1+INR

)
Y

(i)N
2 (see the analysis in the

subsection V-B for details). Note that this can be viewed as a block version of the Schalkwijk-

Kailath scheme [7] (and the references therein). Given the effective channel Ỹ N
2 , the receiver can

simply use point-to-point typicality decoding to recover W2, treating the interference in phase

n as noise.

Theorem 5. If the set P of channel distributions of the fading IC satisfies Condition 1 with

constant c, the rate pair

(R1, R2) =

(
log (1 + SNR + INR)− 2− 3c,E

[
log+

[
|gd|2

1 + INR

]])
is achievable by the scheme. The scheme together with switching the roles of users and time-

sharing, achieves the capacity region of symmetric feedback IC within 2 + 3c bits.

Proof: See section V.

IV. ANALYSIS OF RATE SPLITTING SCHEMES

A. Proof of Theorem 3

Note that since the receivers know their respective incoming channel states, we can view the

effective channel output at Rxi as the pair
(
Yi, gi

)
. Then the block Markov scheme of [10]
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implies that the rate pairs (R1, R2) satisfying

R1 ≤ I
(
U,U2, X1;Y1, g1

)
(16)

R1 ≤ I
(
U1;Y2, g2|U,X2

)
+ I

(
X1;Y1, g1|U1, U2, U

)
(17)

R2 ≤ I
(
U,U1, X2;Y2, g2

)
(18)

R2 ≤ I
(
U2;Y1, g1|U,X1

)
+ I

(
X2;Y2, g2|U1, U2, U

)
(19)

R1 +R2 ≤ I
(
X1;Y1, g1|U1, U2, U

)
+ I

(
U,U1, X2;Y2, g2

)
(20)

R1 +R2 ≤ I
(
X2;Y2, g2|U1, U2, U

)
+ I

(
U,U2, X1;Y1, g1

)
(21)

for all p (u) p (u1|u) p (u2|u) p (x1|u1, u) p (x2|u2, u) are achievable. We choose the input distri-

bution according to

U ∼ CN
(
0, |ρ|2

)
, Uk ∼ CN (0, λck) , Xpk ∼ CN (0, λpk)

X1 = eiθU + U1 +Xp1

X2 = U + U2 +Xp2

with 0 ≤ |ρ|2 ≤ 1, 0 ≤ θ < 2π, λck + λpk = 1 − |ρ|2 and λpk = min
(

1
INRk

, 1− |ρ|2
)

. Note

that we have introduced an extra rotation θ for the first transmitter, which will become helpful

in proving the capacity gap.

With this choice of λpk we perform the rate splitting according to the average inr in place of

rate splitting based on the constant inr for static channels. On evaluating the terms in (16)−(21)

for this choice of input distribution, we get the inner bound described by (1)−(6); the calculations

are deferred to Appendix A.
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An outer bound for the feedback case is given by (22)− (27) with 0 ≤ |ρ| ≤ 1:

R1 ≤ E
[
log
(
|g11|2 + |g21|2 + 2Re (ρg11g

∗
21) + 1

)]
(22)

R1 ≤ E
[
log
(
1 +

(
1− |ρ|2

)
|g12|2

)]
+ E

[
log

(
1 +

(
1− |ρ|2

)
|g11|2

1 +
(
1− |ρ|2

)
|g12|2

)]
(23)

R2 ≤ E
[
log
(
|g22|2 + |g12|2 + 2Re (ρg∗22g12) + 1

)]
(24)

R2 ≤ E
[
log
(
1 +

(
1− |ρ|2

)
|g21|2

)]
+ E

[
log

(
1 +

(
1− |ρ|2

)
|g22|2

1 +
(
1− |ρ|2

)
|g21|2

)]
(25)

R1 +R2 ≤ E
[
log
(
|g22|2 + |g12|2 + 2Re (ρg∗22g12) + 1

)]
+ E

[
log

(
1 +

(
1− |ρ|2

)
|g11|2

1 +
(
1− |ρ|2

)
|g12|2

)]
(26)

R1 +R2 ≤ E
[
log
(
|g11|2 + |g21|2 + 2Re (ρg11g

∗
21) + 1

)]
+ E

[
log

(
1 +

(
1− |ρ|2

)
|g22|2

1 +
(
1− |ρ|2

)
|g21|2

)]
, (27)

The outer bounds can be easily derived following the proof techniques from [10] using

E [X1X
∗
2 ] = ρ, treating

(
Yi, gi

)
as output, and using the i.i.d property of the channels. The

calculations are deferred to the Appendix B.

Claim 6. The gap between the inner bound (1) − (6) and the outer bound (22) − (27) for the

feedback case is atmost c+ 2 bits.

Proof: The Condition 1 we imposed on the fading distribution and the rotation θ for the

first transmitter become important in proving a constant gap capacity result. We compare the

corresponding equations in outer and inner bounds. Denote the gap between the first outer bound

and inner bound by δ1, for the second pair denote the gap by δ2, and so on. Choose θ in the

inner bound to match arg (ρ) in the outer bound. We get

δ1 = E
[
log
(
|g11|2 + |g21|2 + 2 |ρ|Re

(
eiθg11g

∗
21

)
+ 1
)]

− E
[
log
(
|g11|2 + |g21|2 + 2 |ρ|2 Re

(
eiθg11g

∗
21

)
+ 1
)]

+ 1

= E

[
log

(
1 + |g11|2 + |g21|2 + 2 |ρ|Re

(
eiθg11g

∗
21

)
1 + |g11|2 + |g21|2 + 2 |ρ|2 Re (eiθg11g∗21)

)]
+ 1

= E

log

 1 + 1
|g11|2+|g21|2

+ |ρ|
(

2Re(eiθg11g∗21)
|g11|2+|g21|2

)
1 + 1

|g11|2+|g21|2
+ |ρ|2

(
2Re(eiθg11g∗21)
|g11|2+|g21|2

)

+ 1.



12

We have ∣∣∣∣∣2Re
(
eiθg11g

∗
21

)
|g11|2 + |g21|2

∣∣∣∣∣ =

∣∣e−iθg∗11g21 + eiθg11g
∗
21

∣∣
|g11|2 + |g21|2

≤ 1,

hence we call e−iθg∗11g21+e
iθg11g∗21

|g11|2+|g21|2
= sinφ and let |g11|2 + |g21|2 = r2. Therefore

δ1 = E

[
log

(
1 + 1

r2
+ |ρ| sinφ

1 + 1
r2

+ |ρ|2 sinφ

)]
+ 1.

If sinφ < 0, then
1 + 1

r2
+ |ρ| sinφ

1 + 1
r2

+ |ρ|2 sinφ
≤ 1.

If sinφ > 0, then
1 + 1

r2
+ |ρ| sinφ

1 + 1
r2

+ |ρ|2 sinφ
= 1 +

(
|ρ| − |ρ|2

)
sinφ

1 + 1
r2

+ |ρ|2 sinφ
≤ 2

since 0 ≤
(
|ρ| − |ρ|2

)
sinφ ≤ 1 and 1 + 1

r2
+ |ρ|2 sinφ > 1. Hence δ1 ≤ 2. Now we consider the

gap δ2 between the second inequality (23) of the outer bound and the second inequality (2) of

the inner bound.

δ2 = E

[
log

(
1 +

(
1− |ρ|2

)
|g11|2

1 +
(
1− |ρ|2

)
|g12|2

)]
− E

[
log
(
1 + λp1 |g11|2 + λp2 |g21|2

)]
+ 2

(a)

≤ E
[
log
(
1 +

(
1− |ρ|2

)
INR1 +

(
1− |ρ|2

)
|g11|2

)]
− E

[
log
(
1 +

(
1− |ρ|2

)
INR1

)]
+ c

− E
[
log
(
1 + λp1 |g11|2 + λp2 |g21|2

)]
+ 2

≤ E

[
log

(
1 +

(
1− |ρ|2

)
|g11|2

1 +
(
1− |ρ|2

)
INR1

)]
− E

[
log
(
1 + λp1 |g11|2

)]
+ 2 + c (28)

where (a) follows from Condition 1 on the distribution of |gij|2 and Jensen’s inequality. We have

λp1 = min
(

1
INR1

, 1− |ρ|2
)

; on considering the cases λp1 = 1−|ρ|2 and λp1 = 1
INR1

separately,

it can be shown that

1 +

(
1− |ρ|2

)
|g11|2

1 +
(
1− |ρ|2

)
INR1

< 1 + λp1 |g11|2 . (29)

Hence δ2 ≤ c+ 2 follows. By inspection of the other bounding inequalities we get

δ3 ≤ 2

δ4 ≤ c+ 2

δ5 ≤ 3 + c

δ6 ≤ 3 + c.

Hence it follows that the capacity gap is at most c+ 2 bits.
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B. Proof of Theorem 4

From [2] we obtain that a Han-Kobayashi scheme for IC can achieve the following rate region

for all p (u1) p (u2) p (x1|u1) p (x2|u2). Note that we use
(
Yi, gi

)
instead of (Yi) in the actual result

from [2] to account for the fading.

R1 ≤ I
(
X1;Y1, g1|U2

)
(30)

R2 ≤ I
(
X2;Y2, g2|U1

)
(31)

R1 +R2 ≤ I
(
X2, U1;Y2, g2

)
+ I

(
X1;Y1, g1|U1, U2

)
(32)

R1 +R2 ≤ I
(
X1, U2;Y1, g1

)
+ I

(
X2;Y2, g2|U1, U2

)
(33)

R1 +R2 ≤ I
(
X1, U2;Y1, g1|U1

)
+ I

(
X2, U1;Y2, g2|U2

)
(34)

2R1 +R2 ≤ I
(
X1, U2;Y1, g1

)
+ I

(
X1;Y1, g1|U1, U2

)
+ I

(
X2, U1;Y2, g2|U2

)
(35)

R1 + 2R2 ≤ I
(
X2, U1;Y2, g2

)
+ I

(
X2;Y2, g2|U1, U2

)
+ I

(
X1, U2;Y1, g1|U1

)
. (36)

Now similar to that in [3], choose the Gaussian input distribution

Uk ∼ CN (0, λck) , Xpk ∼ CN (0, λpk) , k ∈ {1, 2}

X1 = U1 +Xp1

X2 = U2 +Xp2

where λck + λpk = 1 and λpk = min
(

1
INRk

, 1
)

. Here we introduced the rate splitting using

the average inr. On evaluating the region described by (30) − (36) with this choice of input

distribution, we get the region described by (7)− (13); the computations are similar to that of

the feedback case.
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An outer bound for the non-feedback case is given by (37)− (43)

R1 ≤ E
[
log
(
1 + |g11|2

)]
(37)

R2 ≤ E
[
log
(
1 + |g22|2

)]
(38)

R1 +R2 ≤ E
[
log
(
1 + |g22|2 + |g12|2

)]
+ E

[
log

(
1 +

|g11|2

1 + |g12|2

)]
(39)

R1 +R2 ≤ E
[
log
(
1 + |g11|2 + |g21|2

)]
+ E

[
log

(
1 +

|g22|2

1 + |g21|2

)]
(40)

R1 +R2 ≤ E

[
log

(
1 + |g21|2 +

|g11|2

1 + |g12|2

)]
+ E

[
log

(
1 + |g12|2 +

|g22|2

1 + |g21|2

)]
(41)

2R1 +R2 ≤ E
[
log
(
1 + |g11|2 + |g21|2

)]
+ E

[
log

(
1 + |g12|2 +

|g22|2

1 + |g21|2

)]

+ E

[
log

(
1 +

|g11|2

1 + |g12|2

)]
(42)

R1 + 2R2 ≤ E
[
log
(
1 + |g22|2 + |g12|2

)]
+ E

[
log

(
1 + |g21|2 +

|g11|2

1 + |g12|2

)]

+ E

[
log

(
1 +

|g22|2

1 + |g21|2

)]
, (43)

The outer bounds easily follow from the results in [3] by modifying them for the fading case by

treating
(
Yi, gi

)
as output, and using the i.i.d property of the channels, and by using the outer

bounds (26) and (27) for feedback case after setting E [X1X
∗
2 ] = ρ = 0.

Claim 7. The gap between the inner bound (7)− (13) and the outer bound (37)− (43) for the

feedback case is atmost c+ 1 bits.

Proof: The proof for the capacity gap again uses the Condition 1 on the fading distribu-

tion.Denote the gap between the first outer bound (37) and first inner bound (7) by δ1, δ2 for

the second pair and so on. Clearly δ1 ≤ 1 and δ2 ≤ 1. Now

δ3 = 2 + E

[
log

(
1 +

|g11|2

1 + |g12|2

)]
− E

[
log
(
1 + λp1 |g11|2 + λp2 |g21|2

)]
(a)

≤ 2 + E

[
log

(
1 +

|g11|2

1 + INR1

)]
+ c− E

[
log
(
1 + λp1 |g11|2

)]
.
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The step (a) follows from Jensen’s inequality and Condition 1 on |g12|2. We have λp1 =

min
(

1
INR1

, 1
)
≥ 1

INR1+1
, hence

E

[
log

(
1 +

|g11|2

1 + INR1

)]
− E

[
log
(
1 + λp1 |g11|2

)]
≤ 0.

Therefore δ3 ≤ 2 + c. Similarly one can show

δ4 ≤ 2 + c

δ5 ≤ 2 + 2c

δ6 ≤ 3 + 2c

δ7 ≤ 3 + 2c.

For δ5, δ6, and δ7 we have to use the Condition 1 twice and hence 2c appears. Now it follows

that the capacity gap is at most c+ 1 bits.

V. ANALYSIS OF POINT-TO-POINT CODES FOR SYMMETRIC GAUSSIAN FADING ICS

We provide the analysis for the scheme described in subsection III-B going through the

decoding at the two receivers and then at the capacity gap for the region achievable using

the scheme we developed.

A. Decoding at Rx1

At the end of n blocks Rx1 collects Y1
N =

(
Y

(1)N
1 , . . . Y

(n)N
1

)
and decodes W1 such

that
(
X1

N (W1) ,Y1
N
)

is jointly typical, where X1
N =

(
X

(1)N
1 , . . . X

(n)N
1

)
. Using standard

techniques it follows that for the n-phase scheme as N → ∞ user 1 can achieve the rate
1
n
E
[
log

(
|KY1

(n)|
|KY1|X1

(n)|

)]
where |KY1(n)| denotes the determinant of covariance matrix for the

the n-phase scheme defined in the following pattern

KY1(1) =
[
1 + |g11 (1)|2 + |g21 (1)|2

]
KY1(2) =

 |g11 (2)|2 + |g21(2)|2(|g12(1)|2+1)
1+INR + 1

g∗
11(1)g21(2)g12(1)√

1+INR
g11(1)g

∗
21(2)g

∗
12(1)√

1+INR
|g11 (1)|2 + |g21 (1)|2 + 1



KY1(3) =


|g11 (3)|2 +

|g21(3)|2(|g12(2)|2+1)
1+INR + 1

g∗
11(2)g21(3)g12(2)√

1+INR
0

g11(2)g
∗
21(3)g

∗
12(2)√

1+INR
|g11 (2)|2 +

|g21(2)|2(|g12(1)|2+1)
1+INR + 1

g∗
11(1)g21(2)g12(1)√

1+INR

0
g11(1)g

∗
21(2)g

∗
12(1)√

1+INR
|g11 (1)|2 + |g21 (1)|2 + 1
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where g11 (i) ∼ gd i.i.d and g12 (i) , g12 (i) ∼ gc i.i.d. Letting n → ∞, Rx1 can achieve the

rate R1 = lim
n→∞

1
n
E
[
log

(
|KY1

(n)|
|KY1|X1

(n)|

)]
. We need to evaluate lim

n→∞
1
n
E
[
log

(
|KY1

(n)|
|KY1|X1

(n)|

)]
. The

following lemma gives an upper bound on 1
n
E [log (|KY1(n)|)].

Lemma 8.

1

n
E [log (|KY1(n)|)] ≥ 1

n
log
(∣∣∣K̂Y1(n)

∣∣∣)− 3c

where K̂Y1(n) is obtained from KY1(n) by replacing g12 (i)’s,g21 (i)’s with
√
INR and g11 (i)’s

with
√
SNR.

Proof: The proof involves expanding the matrix determinant and repeated application of

the Condition 1. The details are given in Appendix C.

Subsequently we use the following lemma in bounding lim
n→∞

1
n

log
(∣∣∣K̂Y1(n)

∣∣∣).

Lemma 9. If A1 = [|a|] , A2 =

 |a| b

b∗ |a|

 , A3 =


|a| b 0

b∗ |a| b

0 b∗ |a|

 , A4 =


|a| b 0 0

b∗ |a| b 0

0 b∗ |a| b

0 0 b∗ |a|


etc. with |a|2 > 4 |b|2, then

lim inf
n→∞

1

n
log (|An|) ≥ log

(
|a|
2

)
.

Proof: The proof is given in Appendix D.

For the n-phase scheme, the
∣∣∣K̂Y1(n)

∣∣∣ matrix has the form An, as defined in Lemma 9 after

identifying |a| = 1 + INR + SNR and b =
√
SNRINR√
1+INR

. Note that with this choice |a|2 > 4 |b|2

holds due to AM-GM inequality. Hence we have

lim inf
n→∞

1

n
log
(∣∣∣K̂Y1(n)

∣∣∣) ≥ log

(
1 + INR + SNR

2

)
(44)

using Lemma 9.Also, KY1|X1(n) is a diagonal matrix of the form

KY1|X1(n) = diag

(
|g21 (n)|2

1 + INR
+ 1,

|g21 (n− 1)|2

1 + INR
+ 1, . . . ,

|g21 (2)|2

1 + INR
+ 1, |g21 (1)|2 + 1

)
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Hence using Jensen’s inequality

lim sup
n→∞

1

n
E
[
log
(∣∣KY1|X1(n)

∣∣)] ≤ lim sup
n→∞

1

n
log

((
INR

1 + INR
+ 1

)n−1
(1 + INR)

)
(45)

= log

(
INR

1 + INR
+ 1

)
(46)

≤ 1 (47)

Hence

R1 ≤ log (1 + INR + SNR)− 3c− 2 (48)

is achievable.

B. Decoding at Rx2

For user 2 we can use a block variant of Schalkwijk-Kailath scheme [7] to achieve R2 =

E
[
log+

(
|gd|2

1+INR

)]
. The key idea is that the interference-plus-noise sent in subsequent slots can

indeed refine the symbols of the previous slot. The chain of refinement over n phases compensate

for the fact that the information symbols are sent only in the first phase. We have

Y
(1)N
2 = g

(1)N
22 XN

2 + g
(1)N
12 X

(1)N
1 + Z

(1)N
2 (49)

and

Y
(i)N
2 = g

(i)N
22

(
g
(i−1)N
12 X

(i−1)N
1 + Z

(i−1)N
2√

1 + INR

)
+ g

(i)N
12 X

(i)N
1 + Z

(i)N
2 (50)

for i > 1. Now let

Y N
2 =

n∑
i=1

(
n∏

j=i+1

−g(j)N22√
1 + INR

)
Y

(i)N
2

= g
(1)N
22

(
n∏

j=i+1

−g(j)N22√
1 + INR

)
XN

2 + g
(n)N
12 X

(n)N
1 + Z

(n)N
2 . (51)

Now Rx2 decodes for its message from Y N
2 . Hence Rx2 can achieve the rate

R2 ≤ lim inf
n→∞

1

n
E

[
log

(
1 +

(
n∏

j=i+1

|g22 (j)|2

1 + INR

)
|g22 (1)|2

1 + |g12 (n)|2

)]
(52)

where g22 (1) , . . . , g22 (n) ∼ gd being i.i.d and g12 (n) ∼ gc.Hence it follows that

R2 ≤ E

[
log+

(
|gd|2

1 + INR

)]
(53)

is achievable.
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C. Capacity gap

We can obtain the following outer bounds from Theorem 3 for the special case of symmetric

fading statistics.

R1, R2 ≤ E
[
log
(
|gd|2 + |gc|2 + 1

)]
(54)

R1 +R2 ≤ E

[
log

(
1 +

|gd|2

1 + |gc|2

)]
+ E

[
log
(
|gd|2 + |gc|2 + 2 |gd| |gc|+ 1

)]
(55)

The outer bounds reduce to a pentagonal region with two non-trivial corner points (see Figure

2). Our n-phase scheme can achieve the two corner points within 2 + 3c bits for each user. The

proof is using Condition 1 and is deferred to Appendix E.

Outer bound

R1

R2

Achievable by n phase schemes

4.5bits

Figure 2. Illustration of bounds for capacity region for symmetric fading Gaussian IC. The corner points of the outer bound

can be approximately achieved by our n-phase schemes. The gap is approximately 4.5 bits for the Rayleigh fading case.

Note that our analysis for R1 can be easily modified to obtain a closed form approximate

expression for the 2-tap fading ISI channel capacity, described by

Y (t) = gd (t)X (t) + gc (t)X (t− 1) + Z (t) , (56)

as a by-product. This gives rise to the following corollary on the capacity of fading ISI channels.
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Corollary 10. If there exists c that satisfies the Condition 1 for gd, gc, then the capacity CF−ISI

of the 2-tap fading ISI channel (56) is bounded by log (1 + SNR + INR) + 1 ≥ CF−ISI ≥

log (1 + SNR + INR)− 1− 3c.

VI. FADING MODELS

Here we discuss the fading models that satisfy the required Condition 1. The following lemma

converts Condition 1 to a simpler form.

Lemma 11. A set of channel distributions P satisfies Condition 1 with constant c if and only if

for all P ∈ P ,

E [log (W ′)] ≥ −c,

where W ′ = W
E[W ]

, and W is distributed according to P .

Proof: We first note that φ (a) = log (a+ E [W ]) − E [log (a+W )] ≥ 0 due to Jensen’s

inequality. Taking derivative with respect to a and again using Jensen’s inequality we get

(ln 2)φ′ (a) =
1

a+ E [W ]
− E

[
1

a+W

]
≤ 0. (57)

Hence φ (a) achieves the maximum value at a = 0 in the range [0,∞). Hence we have the

equivalent condition

log (E [W ])− E [log (W )] ≤ c, (58)

which is equivalent to

E [log (W ′)] ≥ −c. (59)

Hence it follows that for any distribution that has a point mass at 0 (for example, bursty

interference model [13]), we cannot guarantee a constant capacity gap, since it has E [log (W ′)] =

−∞. Now we discuss a few distributions that can be easily shown to satisfy the required condition

for the scheme.

A. Gamma distribution

Gamma distribution generalizes some of the commonly used fading models, including Rayleigh

and Nakagami fading. The probability density function for Gamma distribution is given by

f (w) =
wk−1e−

w
θ

θkΓ(k)
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for w > 0, where k > 0 is the shape parameter, and θ > 0 is the scale parameter.

Proposition 12. If the elements of P are Gamma distributed with shape parameter k, P satisfies

Condition 1 with constant c = log(e)
α
− log

(
1 + 1

2α

)
for any 0 < α ≤ k.

Proof: Using Lemma 11, it is sufficient to prove E [log (W ′)] ≥ log(e)
α
− log

(
1 + 1

2α

)
, where

W ′ is Gamma distributed with k > 0 and E [W ]′ = 1. It is known for the Gamma distribution

that E [W ] = kθ and E [ln (W )] = ψ (k) + ln (θ) , where ψ is the digamma function. Therefore

−E [log (W ′)] = log(e) (ln (k)− ψ (k)) (60)

We first use the following property of digamma function

ψ (k) = ψ (k + 1)− 1

k
, (61)

and then use the inequality from [1]

ln

(
k +

1

2

)
< ψ (k + 1) < ln

(
k + e−γ

)
. (62)

Hence

−E [log (W ′)] < log(e)

(
ln (k)− ln

(
k +

1

2

)
+

1

k

)
=

log (e)

α
− log

(
1 +

1

2α

)
. (63)

The last step follows because the function involved is decreasing in k in the range (0,∞) and

since it is assumed 0 < α ≤ k.

Corollary 13. If the elements of P are Rayleigh distributed, P satisfies Condition 1 with constant

c = 0.86.

Proof: In Rayleigh fading model the |gij|2 is exponentially distributed with mean INRi. The

exponential distribution itself is a special case of Gamma distribution with k = 1 . Substituting

α = 1 in (63) we get E [log (W ′)] > −0.86.

The constant for Nakagami fading can be obtained as a special case of the Gamma distribution;

in this case the capacity gap will depend upon the parameters used in the model.
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B. Weibull distribution

The probability density function for Weibull distribution is given by

f (w) =
k

λ

(w
λ

)k−1
e−(w/λ)

k

for x > 0 with k, λ > 0.

Proposition 14. If the elements of P are Weibull distributed with parameter k, P satisfies

Condition 1 with constant c = γ log(e)
α

+ log
(
Γ
(
1 + 1

α

))
for any 0 < α ≤ k, where γ is Euler’s

constant.

Proof: For Weibull distributed W , we have E [W ] = λΓ
(
1 + 1

k

)
and E [ln (W )] = ln (λ)− γ

k
,

where Γ (·) denotes the gamma function and γ is the Euler’s constant. Hence for 0 < α ≤ k, it

follows that

− E [log (W ′)] ≤ γ log (e)

α
+ log

(
Γ

(
1 +

1

α

))
. (64)

Using Lemma 11 concludes the proof.

Note that exponential distribution can be specialized from Weibull distribution as well, by

setting k = 1. Hence we get the tighter gap in the following corollary.

Corollary 15. If the elements of P are Rayleigh distributed, P satisfies Condition 1 with constant

c = 0.83.

In the following table we summarize the values of c in Condition 1 for different distributions.

Table II

VALUE OF c IN CONDITION 1 FOR DIFFERENT DISTRIBUTIONS

Fading Model Value of c

Rayleigh 0.83

Gamma k = 1 0.86

Gamma k = 2 0.40

Gamma k = 3 0.26

Weibull k = 1 0.83

Weibull k = 2 0.24

Weibull k = 3 0.11
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C. Other distributions

Here we give a lemma that can be used to verify whether a given fading model satisfies

Condition 1.

Lemma 16. If the cumulative distribution function F (w) of W satisfies F (w) ≤ awb over

w ∈ [0, ε] for some a ≥ 0, b > 0, and 0 < ε ≤ 1, then

E [ln (W )] ≥ ln (ε) + aεb ln (ε)− aεb

b
. (65)

Proof: The condition in this lemma ensures that the probability density function f(w) grows

slow enough as w → 0− so that f(w) ln (w) is integrable at 0. Also the behavior for large values

of w is not relevant here, since we are looking for a lower bound on E [ln (W )]. The detailed

proof is given in Appendix F.

Hence if the cumulative distribution of the channel gains grow polynomially in a neighborhood

of 0, the resulting logarithm becomes integrable, and thus it is possible to find a constant c

satisfying the required Condition 1.

VII. CONCLUSION

We proved that the rate-splitting schemes for the static 2-user Gaussian IC without CSIT

[3], [2] and that with delayed feedback [10], can be extended to the fading case for a class of

fading distributions. The proof for optimality to within a constant gap, relies on the sufficient

condition, which the fading distribution is assumed to satisfy. We then developed a scheme for

symmetric ICs, which can be implemented using point-to-point codes and can approximately

achieve the capacity region. An important direction to study will be to see if similar scheme

can be extended to general ICs. Also our schemes does not work for bursty IC since it does

not satisfy the Condition 1, it would be interesting to study if the schemes can be extended to

bursty IC and then to any arbitrary fading distribution.
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APPENDIX A

PROOF OF ACHIEVABILITY FOR FEEDBACK CASE

We evaluate the term in the first inner bound inequality (16) . The other terms can be similarly

evaluated.

I
(
U,U2, X1;Y1, g1

) (a)
= I

(
U,U2, X1;Y1|g1

)
(66)

= h
(
Y1|g1

)
− h

(
Y1|g1, U, U2, X1

)
, (67)

variance
(
Y1|g1

)
= variance (g11X1 + g21X2 + Z1|g11, g21) (68)

= |g11|2 + |g21|2 + g∗11g21E [X∗1X2] + g11g
∗
21E [X1X

∗
2 ] + 1 (69)

= |g11|2 + |g21|2 + 2 |ρ|2 Re
(
g11g

∗
21e

iθ
)

+ 1 (70)

h
(
Y1|g1, U, U2, X1

)
= h

(
g11X1 + g21X2 + Z1|g1, U, U2, X1

)
(71)

= h
(
g21Xp2 + Z1|g1

)
(72)

= E
[
log
(
1 + λp2 |g21|2

)]
+ log (2πe) (73)

(b)

≤ E
[
log

(
1 +

1

INR2

|g21|2
)]

+ log (2πe) (74)

(c)

≤ log (2) + log (2πe) (75)

= 1 + log (2πe) , (76)

∴ I
(
U,U2, X1;Y1, g1

)
≥ E

[
log
(
|g11|2 + |g21|2 + 2 |ρ|2 Re

(
g11g

∗
21e

iθ
)

+ 1
)]
− 1 (77)

where (a) uses independence, (b) uses the monotonicity of expectation and λpi ≤ 1
INRi

, and (c)

follows from Jensen’s inequality.

APPENDIX B

PROOF OF OUTER BOUNDS FOR FEEDBACK CASE

Following the Suh-Tse methods [10], we let E [X1X
∗
2 ] = ρ. We have the notation g1 = [g11, g21]

, g2 = [g22, g12], g = [g11, g21, g22, g12], S1 = g12X1 + Z2, and S2 = g21X2 + Z1. We let

E [X1X
∗
2 ] = ρ = |ρ| eiθ. On choosing a uniform distribution of messages we get
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n(R1 − εn)
(a)

≤ I
(
W1;Y

n
1 |gn1

)
(78)

(b)

≤
∑(

h
(
Y1i|g1i

)
− h (Z1i)

)
(79)

=
∑(

Eg̃1i
[
h
(
Y1i|g1i = g̃1i

)
− h (Z1i)

])
(80)

(c)
= Eg̃1

[∑(
h
(
Y1i|g1i = g̃1

)
− h (Z1i)

)]
(81)

∴ R1 ≤ E
[
log
(
|g11|2 + |g21|2 + (ρ∗g∗11g21 + ρg11g

∗
21) + 1

)]
(82)

where (a) follows from Fano’s inequality, (b) follows from the fact that conditioning reduces

entropy, and (c) follows from the fact that g̃1i are i.i.d. Now we bound R1 in a second way as

done in [10]:

n(R1 − εn) ≤ I
(
W1;Y

n
1 , g

n
1

)
(83)

≤ I
(
W1;Y

n
1 , g

n
1 , Y

n
2 , g

n
2 ,W2

)
(84)

= I
(
W1; g

n
1 , g

n
2 ,W2

)
+ I

(
W1;Y

n
1 , Y

n
2 |gn1 , gn2 ,W2

)
(85)

= 0 + I
(
W1;Y

n
1 , Y

n
2 |gn,W2

)
(86)

= h
(
Y n
1 , Y

n
2 |gn,W2

)
− h

(
Y n
1 , Y

n
2 |gn,W1,W2

)
(87)

=
∑[

h
(
Y1i, Y2i|gn,W2, Y

i−1
1 , Y i−1

2

)]
−
∑

[h (Z1i) + h (Z2i)] (88)

=
∑[

h
(
Y2i|gn,W2, Y

i−1
1 , Y i−1

2

)]
+
∑[

h
(
Y1i|gn,W2, Y

i−1
1 , Y i

2

)]
−
∑

[h (Z1i) + h (Z2i)] (89)

(a)
=
∑[

h
(
Y2i|gn,W2, Y

i−1
1 , Y i−1

2 , X i
2

)]
+
∑[

h
(
Y1i|gn,W2, Y

i−1
1 , Y i

2 , S1i, X
i
2

)]
−
∑

[h (Z1i) + h (Z2i)] (90)

(b)

≤
∑[

h
(
Y2i|gi, X2i

)
− h (Z2i)

]
+
∑[

h
(
Y1i|gi, S1i, X2i

)
− h (Z1i)

]
(91)

(c)
= Eg̃

[∑(
h
(
Y2i|X2i, gi = g̃

)
− h (Z2i)

)]
+ Eg̃

[∑(
h
(
Y1i|S1i, X2i, gi = g̃

)
− h (Z1i)

)]
(92)

∴ R1

(d)

≤ E
[
log
(
1 +

(
1− |ρ|2

)
|g12|2

)]
+ E

[
log

(
1 +

(
1− |ρ|2

)
|g11|2

1 +
(
1− |ρ|2

)
|g12|2

)]
(93)
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where (a) follows from the fact that X i
2 is a function of

(
W2, Y

i−1
2 , gi−1

)
and Si1 is a function

of (Y i
2 , X

i
2), (b) follows from the fact that conditioning reduces entropy, (c) follows from the

fact that g̃i are i.i.d., and (d) follows from the Suh-Tse results [10]. The other outer bounds can

be derived similarly following [10] and making suitable changes to account for fading as we

illustrated in the previous two derivations.

APPENDIX C

FADING MATRIX

The calculations are given in equations (94,94).

E [log (|KY1(n)|)]

= E

[
log

((
|g11 (n)|2 + |g21 (n)|2

(
|g12 (n)|2 + 1

1 + INR

)
+ 1

)
|KY1(n− 1)|

−|g11 (n− 1)|2 |g21 (n)|2 |g12 (n− 1)|2

1 + INR
|KY1(n− 2)|

)]
(94)

≥ E [log ((1 + INR + SNR) |KY1(n− 1)|

−INR |g11 (n− 1)|2 |g12 (n− 1)|2

1 + INR
|KY1(n− 2)|

)]
− 3c (95)

The first step (94), is by expanding the determinant. We use the Condition 1 thrice in the second

step (94). This is justified because the coefficients of
{
|g11 (n)|2 , |g12 (n)|2 , |g21 (n)|2

}
in step

(94) are non-negative (due to the fact that all the matrices involved are covariance matrices), and

the coefficients themselves are independent of
{
|g11 (n)|2 , |g12 (n)|2 , |g21 (n)|2

}
. This procedure

can be carried out n times and it follows that:

lim
n→∞

1

n
E [log (|KY1(n)|)] ≥ lim

n→∞

1

n
log
(∣∣∣K̂Y1(n)

∣∣∣)− 3c (96)

where K̂Y1(n) is obtained from KY1(n) by replacing g12 (i)’s,g21 (i)’s with
√
INR and g11 (i)’s

with
√
SNR.

APPENDIX D

MATRIX DETERMINANT: ASYMPTOTIC BEHAVIOR

The following recursion easily follows:

|An| = |a| |An−1| − |b|2 |An−2| (97)
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with |A1| = |a| , |A2| = |a|2−|b|2. Also |A0| can be consistently defined to be 1. The characteristic

equation for this recursive relation is given by: λ2 − |a|λ+ |b|2 = 0 and the characteristic roots

are given by:

λ1 =
|a|+

√
|a|2 − 4 |b|2

2
, λ2 =

|a| −
√
|a|2 − 4 |b|2

2
. (98)

Now the solution of the recursive system is given by:

|An| = c1λ
n
1 + c2λ

n
2 (99)

with the boundary conditions

1 = c1 + c2 (100)

|a| = c1λ1 + c2λ2. (101)

It can be easily seen that c1 > 0, λ1 > λ2 > 0 since |a|2 > 4 |b|2 by assumption of Lemma 9.

Now

lim
n→∞

1

n
log (|An|) = lim

n→∞

1

n
log (c1λ

n
1 + c2λ

n
2 ) (102)

= lim
n→∞

1

n

(
log (λn1 ) + log

(
c1 + c2

λn2
λn1

))
(103)

(a)
= log (λ1) (104)

= log

 |a|+
√
|a|2 − 4 |b|2

2

 . (105)

The step (a) follows because 1 > λ2
λ1
> 0 and c1 > 0.

APPENDIX E

APPROXIMATE CAPACITY USING N PHASE SCHEMES

We have the following outerbounds from Theorem 3.

R1, R2 ≤ E
[
log
(
|gd|2 + |gc|2 + 1

)]
(106)

R1 +R2 ≤ E

[
log

(
1 +

|gd|2

1 + |gc|2

)]
+ E

[
log
(
|gd|2 + |gc|2 + 2 |gd| |gc|+ 1

)]
(107)

The above outer-bound region is a polytope with the following two non-trivial corner points: R1 = E
[
log
(
|gd|2 + |gc|2 + 1

)]
R2 = E

[
log
(

1 + |gd|2

1+|gc|2

)]
+ E

[
log
(

1 + 2|gd||gc|
1+|gd|2+|gc|2

)] 
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 R1 = E
[
log
(

1 + |gd|2

1+|gc|2

)]
+ E

[
log
(

1 + 2|gd||gc|
1+|gd|2+|gc|2

)]
R2 = E

[
log
(
|gd|2 + |gc|2 + 1

)]


We can achieve these rate points within 2 + 2c bits for each user using the n-phase schemes

since

(R1, R2) =

(
log (1 + SNR + INR)− 2− 2c,E

[
log+

[
|gd|2

1 + INR

]])
(108)

(R1, R2) =

(
E

[
log+

[
|gd|2

1 + INR

]]
, log (1 + SNR + INR)− 2− 2c

)
(109)

are achievable and since using Jensen’s inequality

E
[
log
(
|gd|2 + |gc|2 + 1

)]
≤ log (1 + SNR + INR) . (110)

The only important point left to verify is in the following claim

Claim 17. E
[
log
(

1 + |gd|2

1+|gc|2

)]
+ E

[
log
(

1 + 2|gd||gc|
1+|gd|2+|gc|2

)]
− E

[
log+

[
|gd|2

1+INR

]]
≤ 2 + c

Proof: We have 2|gd||gc|
|gd|2+|gc|2

≤ 1 due to AM-GM inequality. Hence

E
[
log

(
1 +

2 |gd| |gc|
1 + |gd|2 + |gc|2

)]
≤ 1. (111)

Also

E

[
log

(
1 +

|gd|2

1 + |gc|2

)]
≤ E

[
log

(
1 +

|gd|2

1 + INR

)]
+ c (112)

using Condition 1. Hence it only remains to show log
(

1 + |gd|2
1+INR

)
− log+

[
|gd|2

1+INR

]
≤ 1 to

complete the proof.

Now if log+
[
|gd|2

1+INR

]
= 0 then |gd|2

1+INR
≤ 1 and hence log

(
1 + |gd|2

1+INR

)
≤ log (2) = 1. If

log+
[
|gd|2

1+INR

]
> 0 then |gd|2

1+INR
> 1 and hence again

log

(
1 +

|gd|2

1 + INR

)
− log+

[
|gd|2

1 + INR

]
= log

(
1 +

1 + INR

|gd|2

)
< 1. (113)
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APPENDIX F

PROOF OF LEMMA 16

We have F (w) ≤ awb for w ∈ [0, ε] where a ≥ 0, b > 0, 1 ≥ ε > 0. Now using integration

by parts we get

E [ln (W )] ≥
ˆ 1

0

f (w) ln (w)

=

ˆ ε

0

f (w) ln (w) +

ˆ 1

ε

f (w) ln (w)

= [F (w) ln (w)]ε0 −
ˆ ε

0

F (w)
1

w
+

ˆ 1

ε

f (w) ln (w)

≥
[
awb ln (w)

]ε
0
−
ˆ ε

0

awb
1

w

≥ aεb ln (ε)− aεb

b
+ ln (ε) .

Note that ln (w) is negative in the range [0, 1), thus we get the desired inequalities in the previous

steps.

REFERENCES

[1] N. Batir. Inequalities for the gamma function. Archiv der Mathematik, 91(6):554–563, 2008.

[2] H-F. Chong, M. Motani, H. K. Garg, and H. El Gamal. On the Han-Kobayashi region for the interference channel. IEEE

Transactions on Information Theory, 54(7):3188–3194, 2008.

[3] R. H. Etkin, D. Tse, and H. Wang. Gaussian interference channel capacity to within one bit. IEEE Transactions on

Information Theory, 54(12):5534–5562, 2008.

[4] R. K. Farsani. The capacity region of the wireless ergodic fading interference channel with partial CSIT to within one bit.

In IEEE International Symposium on Information Theory, pages 759–763, July 2013.

[5] T. Gou, S. A Jafar, C. Wang, S-W Jeon, and S-Y Chung. Aligned interference neutralization and the degrees of freedom

of the 2× 2× 2 interference channel. IEEE Transactions on Information Theory, 58(7):4381–4395, July 2012.

[6] M. G. Kang and W. Choi. Ergodic interference alignment with delayed feedback. arXiv preprint arXiv:1303.3100, 2013.

[7] J. Schalkwijk and T. Kailath. A coding scheme for additive noise channels with feedback–i: No bandwidth constraint.

IEEE Transactions on Information Theory, 12(2):172–182, 1966.

[8] J. Sebastian, C. Karakus, and S. Diggavi. Approximately achieving the feedback interference channel capacity with

point-to-point codes. In IEEE International Symposium on Information Theory, pages 715–719, July 2016.

[9] J. Sebastian, C. Karakus, S. Diggavi, and I. H. Wang. Rate splitting is approximately optimal for fading gaussian interference

channels. In Annual Allerton Conference on Communication, Control, and Computing, pages 315–321, Sept 2015.

[10] C. Suh and D. Tse. Feedback capacity of the gaussian interference channel to within 2 bits. IEEE Transactions on

Information Theory, 57(5):2667–2685, May 2011.

[11] D. Tuninetti. Gaussian fading interference channels: Power control. In Asilomar Conference on Signals, Systems and

Computers, pages 701–706, Oct 2008.



29

[12] A. Vahid, M. A. Maddah-Ali, and A. S. Avestimehr. Capacity results for binary fading interference channels with delayed

csit. IEEE Transactions on Information Theory, 60(10):6093–6130, Oct 2014.

[13] H. Wang, C. Suh, S. N. Diggavi, and P. Viswanath. Bursty interference channel with feedback. In IEEE International

Symposium on Information Theory, pages 21–25. IEEE, 2013.


	Introduction
	Model and Notation
	Main results
	Rate splitting for Gaussian fading ICs
	Description of the scheme with point-to-point codes

	Analysis of Rate splitting schemes
	Proof of Theorem 3
	Proof of Theorem 4

	Analysis of Point-to-Point Codes for Symmetric Gaussian Fading ICs
	Decoding at Rx1
	Decoding at Rx2
	Capacity gap

	Fading models
	Gamma distribution
	Weibull distribution
	Other distributions

	Conclusion
	Appendix A: Proof of achievability for feedback case
	Appendix B: Proof of outer bounds for feedback case
	Appendix C: Fading matrix
	Appendix D: Matrix determinant: asymptotic behavior 
	Appendix E: Approximate capacity using n phase schemes 
	Appendix F: Proof of Lemma 16
	References

